Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 69(4): 629-40, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21773671

RESUMEN

Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death.


Asunto(s)
Apoptosis , Proteína Quinasa Activada por ADN/metabolismo , G-Cuádruplex , Mitosis/genética , Proteínas Nucleares/metabolismo , Piridinas/farmacología , Quinolinas/farmacología , Recombinasa Rad51/metabolismo , Telómero , Anafase , Línea Celular , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/genética , Recombinación Homóloga , Humanos , Ligandos , Metafase , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/genética , Telómero/metabolismo , Telómero/patología
2.
Biochimie ; 90(1): 60-72, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18006207

RESUMEN

Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.


Asunto(s)
Daño del ADN , Reparación del ADN , Telomerasa/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/fisiología , Telómero/efectos de la radiación , Animales , Transformación Celular Neoplásica , Humanos , Estrés Oxidativo , Tolerancia a Radiación , Recombinación Genética , Telómero/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA