Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Physiol ; 192(2): 1517-1531, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36852887

RESUMEN

Meristem maintenance, achieved through the highly conserved CLAVATA-WUSCHEL (CLV-WUS) regulatory circuit, is fundamental in balancing stem cell proliferation with cellular differentiation. Disruptions to meristem homeostasis can alter meristem size, leading to enlarged organs. Cotton (Gossypium spp.), the world's most important fiber crop, shows inherent variation in fruit size, presenting opportunities to explore the networks regulating meristem homeostasis and to impact fruit size and crop value. We identified and characterized the cotton orthologs of genes functioning in the CLV-WUS circuit. Using virus-based gene manipulation in cotton, we altered the expression of each gene to perturb meristem regulation and increase fruit size. Targeted alteration of individual components of the CLV-WUS circuit modestly fasciated flowers and fruits. Unexpectedly, controlled expression of meristem regulator SELF-PRUNING (SP) increased the impacts of altered CLV-WUS expression on flower and fruit fasciation. Meristem transcriptomics showed SP and genes of the CLV-WUS circuit are expressed independently from each other, suggesting these gene products are not acting in the same path. Virus-induced silencing of GhSP facilitated the delivery of other signals to the meristem to alter organ specification. SP has a role in cotton meristem homeostasis, and changes in GhSP expression increased access of virus-derived signals to the meristem.


Asunto(s)
Proteínas de Arabidopsis , Meristema , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética
2.
J Exp Bot ; 73(3): 848-859, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34687198

RESUMEN

Phloem loading and transport are fundamental processes for allocating carbon from source organs to sink tissues. Cotton (Gossypium spp.) has a high sink demand for the cellulosic fibers that grow on the seed coat and for the storage reserves in the developing embryo, along with the demands of new growth in the shoots and roots. Addressing how cotton mobilizes resources from source leaves to sink organs provides insight into processes contributing to fiber and seed yield. Plasmodesmata frequencies between companion cells and flanking parenchyma in minor veins are higher than expected for an apoplastic loader, and cotton's close relatedness to Tilia spp. hints at passive loading. Suc was the only canonical transport sugar in leaves and constituted 87% of 14C-labeled photoassimilate being actively transported. [14C]Suc uptake coupled with autoradiography indicated active [14C]Suc accumulation in minor veins, suggesting Suc loading from the apoplast; esculin, a fluorescent Suc analog, did not accumulate in minor veins. Of the nine sucrose transporter (SUT) genes identified per diploid genome, only GhSUT1-L2 showed appreciable expression in mature leaves, and silencing GhSUT1-L2 yielded phenotypes characteristic of blocked phloem transport. Furthermore, only GhSUT1-L2 cDNA stimulated esculin and [14C]Suc uptake into yeast, and only the GhSUT1-L2 promoter caused uidA (ß-glucuronidase) reporter gene expression in minor vein phloem of Arabidopsis thaliana. Collectively, these results argue that apoplastic phloem loading mediated by GhSUT1-L2 is the dominant mode of phloem loading in cotton.


Asunto(s)
Arabidopsis , Floema , Arabidopsis/genética , Transporte Biológico , Gossypium/genética , Gossypium/metabolismo , Floema/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Sacarosa/metabolismo
3.
J Exp Bot ; 71(19): 5911-5923, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32744621

RESUMEN

Patterns of indeterminate and determinate growth specify plant architecture and influence crop productivity. In cotton (Gossypium hirsutum), SINGLE FLOWER TRUSS (SFT) stimulates the transition to flowering and determinate growth, while its closely related antagonist SELF-PRUNING (SP) maintains meristems in indeterminate states to favor vegetative growth. Overexpressing GhSFT while simultaneously silencing GhSP produces highly determinate cotton with reduced foliage and synchronous fruiting. These findings suggest that GhSFT, GhSP, and genes in these signaling networks hold promise for enhancing 'annualized' growth patterns and improving cotton productivity and management. To identify the molecular programs underlying cotton growth habits, we used comparative co-expression networks, differential gene expression, and phenotypic analyses in cotton varieties expressing altered levels of GhSFT or GhSP. Using multiple cotton and tomato datasets, we identified diverse genetic modules highly correlated with SFT or SP orthologs which shared related Gene Ontologies in different crop species. Notably, altering GhSFT or GhSP levels in cotton affected the expression of genes regulating meristem fate and metabolic pathways. Further phenotypic analyses of gene products involved in photosynthesis, secondary metabolism, and cell wall biosynthesis showed that early changes in GhSFT and GhSP levels profoundly impacted later development in distal tissues. Identifying the molecular underpinnings of GhSFT and GhSP activities emphasizes their broad actions in regulating cotton architecture.


Asunto(s)
Flores , Gossypium , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/genética , Meristema , Redes y Vías Metabólicas
4.
New Phytol ; 219(4): 1235-1251, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29949660

RESUMEN

A reduction in the lignin content in transgenic plants induces the ectopic expression of defense genes, but the importance of altered lignin composition in such phenomena remains unclear. Two Arabidopsis lines with similar lignin contents, but strikingly different lignin compositions, exhibited different quantitative and qualitative transcriptional responses. Plants with lignin composed primarily of guaiacyl units overexpressed genes responsive to oomycete and bacterial pathogen attack, whereas plants with lignin composed primarily of syringyl units expressed a far greater number of defense genes, including some associated with cis-jasmone-mediated responses to aphids; these plants exhibited altered responsiveness to bacterial and aphid inoculation. Several of the defense genes were differentially induced by water-soluble extracts from cell walls of plants of the two lines. Glycome profiling, fractionation and enzymatic digestion studies indicated that the different lignin compositions led to differential extractability of a range of heterogeneous oligosaccharide epitopes, with elicitor activity originating from different cell wall polymers. Alteration of lignin composition affects interactions with plant cell wall matrix polysaccharides to alter the sequestration of multiple latent defense signal molecules with an impact on biotic stress responses.


Asunto(s)
Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Animales , Áfidos/fisiología , Arabidopsis/microbiología , Arabidopsis/parasitología , Vías Biosintéticas/genética , Pared Celular/metabolismo , Glicómica , Modelos Biológicos , Plantas Modificadas Genéticamente , Polisacáridos/metabolismo , Pseudomonas syringae/fisiología , Solubilidad , Transcripción Genética , Agua/química
5.
J Exp Bot ; 69(22): 5403-5417, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30202979

RESUMEN

Genes of the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) family influence meristem identity by controlling the balance between indeterminate and determinate growth, thereby profoundly impacting plant architecture. Artificial selection during cotton (Gossypium hirsutum) domestication converted photoperiodic trees to the day-neutral shrubs widely cultivated today. To understand the regulation of cotton architecture and exploit these principles to enhance crop productivity, we characterized the CETS gene family from tetraploid cotton. We demonstrate that genes of the TERMINAL FLOWER 1 (TFL1)-like clade show different roles in regulating growth patterns. Cotton has five TFL1-like genes: SELF-PRUNING (GhSP) is a single gene whereas there are two TFL1-like and BROTHER OF FT (BFT)-like genes, and these duplications are specific to the cotton lineage. All genes of the cotton TFL1-like clade delay flowering when ectopically expressed in transgenic Arabidopsis, with the strongest phenotypes failing to produce functional flowers. GhSP, GhTFL1-L2, and GhBFT-L2 rescue the early flowering Attfl1-14 mutant phenotype, and the encoded polypeptides interact with a cotton FD protein. Heterologous promoter::GUS fusions illustrate differences in the regulation of these genes, suggesting that genes of the GhTFL1-like clade may not act redundantly. Characterizations of the GhCETS family provide strategies for nuanced control of plant growth.


Asunto(s)
Genes de Plantas/genética , Gossypium/genética , Familia de Multigenes/genética , Proteínas de Plantas/genética , Factores de Edad , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Gossypium/efectos de la radiación , Meristema/genética , Meristema/crecimiento & desarrollo , Fotoperiodo , Proteínas de Plantas/metabolismo , Alineación de Secuencia
6.
Plant Physiol ; 170(1): 401-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26530315

RESUMEN

Plant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H(+)-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H(+)-PPases have a well-documented role in hydrolyzing pyrophosphate (PPi) and capturing the released energy to pump H(+) across the tonoplast and endomembranes to create proton motive force (pmf). Recently, an additional role for H(+)-PPases in phloem loading and biomass partitioning was proposed. In companion cells (CCs) of the phloem, H(+)-PPases localize to the plasma membrane rather than endomembranes, and rather than hydrolyzing PPi to create pmf, pmf is utilized to synthesize PPi. Additional PPi in the CCs promotes sucrose oxidation and ATP synthesis, which the plasma membrane P-type ATPase in turn uses to create more pmf for phloem loading of sucrose via sucrose-H(+) symporters. To test this model, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated with constitutive and CC-specific overexpression of AVP1, encoding type 1 ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1. Plants with both constitutive and CC-specific overexpression accumulated more biomass in shoot and root systems. (14)C-labeling experiments showed enhanced photosynthesis, phloem loading, phloem transport, and delivery to sink organs. The results obtained with constitutive and CC-specific promoters were very similar, such that the growth enhancement mediated by AVP1 overexpression can be attributed to its role in phloem CCs. This supports the model for H(+)-PPases functioning as PPi synthases in the phloem by arguing that the increases in biomass observed with AVP1 overexpression stem from improved phloem loading and transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Floema/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidroponía , Pirofosfatasa Inorgánica/genética , Floema/genética , Células Vegetales/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente
7.
New Phytol ; 212(1): 244-58, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27292411

RESUMEN

Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Clonación Molecular , Domesticación , Ecotipo , Flores/fisiología , Silenciador del Gen , Gossypium/virología , Familia de Multigenes , Fotoperiodo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Tallos de la Planta/fisiología
8.
Plant Physiol ; 167(4): 1541-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25681328

RESUMEN

Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Difosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Expresión Génica , Genes Reporteros , Homeostasis , Pirofosfatasa Inorgánica/genética , Mutación , Especificidad de Órganos , Fenotipo , Floema/enzimología , Floema/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Sacarosa/metabolismo
9.
Plant Physiol ; 165(2): 715-731, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24777345

RESUMEN

Sucrose (Suc) is the predominant form of carbon transported through the phloem from source to sink organs and is also a prominent sugar for short-distance transport. In all streptophytes analyzed, Suc transporter genes (SUTs or SUCs) form small families, with different subgroups evolving distinct functions. To gain insight into their capacity for moving Suc in planta, representative members of each clade were first expressed specifically in companion cells of Arabidopsis (Arabidopsis thaliana) and tested for their ability to rescue the phloem-loading defect caused by the Suc transporter mutation, Atsuc2-4. Sequence similarity was a poor indicator of ability: Several genes with high homology to AtSUC2, some of which have phloem-loading functions in other eudicot species, did not rescue the Atsuc2-4 mutation, whereas a more distantly related gene, ZmSUT1 from the monocot Zea mays, did restore phloem loading. Transporter complementary DNAs were also expressed in the companion cells of wild-type Arabidopsis, with the aim of increasing productivity by enhancing Suc transport to growing sink organs and reducing Suc-mediated feedback inhibition on photosynthesis. Although enhanced Suc loading and long-distance transport was achieved, growth was diminished. This growth inhibition was accompanied by increased expression of phosphate (P) starvation-induced genes and was reversed by providing a higher supply of external P. These experiments suggest that efforts to increase productivity by enhancing sugar transport may disrupt the carbon-to-P homeostasis. A model for how the plant perceives and responds to changes in the carbon-to-P balance is presented.

11.
Methods Mol Biol ; 2812: 215-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068365

RESUMEN

Plants stem cells, known as meristems, specify all patterns of growth and organ size. Differences in meristem activities contribute to diverse shoot architectures. As many architectural traits, such as branching patterns, flowering time, and fruit size, are yield determinants, meristem regulation is of fundamental importance to crop productivity. Cotton (Gossypium spp.) produces our most prevalent natural fiber that finds its way into products ranging from industrial cellulose, medical supplies, and paper currency, to a broad diversity of textiles, not least of which is our clothing. However, the cotton plant has growth habits that challenge management practices and limit harvest yield and quality. Unraveling and leveraging the genetic networks regulating meristem activities offers the potential to overcome these limitations. We use virus-based technologies in cotton to perturb signals regulating meristem fate and size. In this chapter, we describe our pipeline for altering cotton meristem dynamics and preparing, analyzing, and exploring the transcriptomes from isolated meristems.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Meristema , RNA-Seq , Transcriptoma , Meristema/genética , Meristema/crecimiento & desarrollo , Gossypium/genética , Gossypium/crecimiento & desarrollo , Transcriptoma/genética , RNA-Seq/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos
12.
Plant Physiol ; 158(4): 1873-82, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22331409

RESUMEN

Cucurbits exude profusely when stems or petioles are cut. We conducted studies on pumpkin (Cucurbita maxima) and cucumber (Cucumis sativus) to determine the origin and composition of the exudate. Morphometric analysis indicated that the exudate is too voluminous to derive exclusively from the phloem. Cold, which inhibits phloem transport, did not interfere with exudation. However, ice water applied to the roots, which reduces root pressure, rapidly diminished exudation rate. Sap was seen by microscopic examination to flow primarily from the fascicular phloem in cucumber, and several other cucurbit species, but primarily from the extrafascicular phloem in pumpkin. Following exposure of leaves to 14CO2, radiolabeled stachyose and other sugars were detected in the exudate in proportions expected of authentic phloem sap. Most of this radiolabel was released during the first 20 s. Sugars in exudate were dilute. The sugar composition of exudate from extrafascicular phloem near the edge of the stem differed from that of other sources in that it was high in hexose and low in stachyose. We conclude that sap is released from cucurbit phloem upon wounding but contributes negligibly to total exudate volume. The sap is diluted by water from cut cells, the apoplast, and the xylem. Small amounts of dilute, mobile sap from sieve elements can be obtained, although there is evidence that it is contaminated by the contents of other cell types. The function of P-proteins may be to prevent water loss from the xylem as well as nutrient loss from the phloem.


Asunto(s)
Cucumis sativus/metabolismo , Cucurbita/metabolismo , Floema/metabolismo , Exudados de Plantas/química , Exudados de Plantas/metabolismo , Metabolismo de los Hidratos de Carbono , Radioisótopos de Carbono , Cucumis sativus/citología , Cucurbita/citología , Modelos Biológicos , Oligosacáridos/metabolismo , Floema/citología , Fotosíntesis , Sacarosa/metabolismo , Agua/metabolismo , Xilema/metabolismo
14.
J Ind Microbiol Biotechnol ; 40(5): 465-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475284

RESUMEN

The microbial communities associated with kenaf (Hibiscus cannabinus) plant fibers during retting were determined in an effort to identify possible means of accelerating this process for industrial scale-up. Microbial communities were identified by semiconductor sequencing of 16S rRNA gene amplicons from DNA harvested from plant-surface associated samples and analyzed using an Ion Torrent PGM. The communities were sampled after 96 h from each of three different conditions, including amendments with pond water, sterilized pond water, or with a mixture of pectinolytic bacterial isolates. Additionally, plants from two different sources and having different pretreatment conditions were compared. We report that the best retting communities are dominated by members of the order Clostridiales. These bacteria appear to be naturally associated with the plant material, although slight variations between source materials were found. Additionally, heavy inoculations of pectinolytic bacteria established themselves and in addition their presence facilitated the rapid dominance of the original plant-associated Clostridiales. These data suggest that members of the order Clostridiales dominate the community and are most closely associated with efficient and effective retting. The results further suggest that establishment of the community structure is first driven by the switch to anaerobic conditions, and subsequently by possible competition for nitrogen. These findings reveal important bacterial groups involved in fiber retting, and suggest mechanisms for the manipulation of the community and retting efficiency by modifying nutrient availability.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Hibiscus/microbiología , Semiconductores , Análisis de Secuencia de ADN/métodos , Bacterias/clasificación , Biodiversidad , Agua Dulce , Biblioteca de Genes , Pectinas/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Humectabilidad
15.
Plant J ; 67(1): 94-104, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21426427

RESUMEN

Agricultural productivity is limited by the removal of sap, alterations in source-sink patterns, and viral diseases vectored by aphids, which are phloem-feeding pests. Here we show that TREHALOSE PHOSPHATE SYNTHASE11 (TPS11) gene-dependent trehalose metabolism regulates Arabidopsis thaliana defense against Myzus persicae (Sülzer), commonly known as the green peach aphid (GPA). GPA infestation of Arabidopsis resulted in a transient increase in trehalose and expression of the TPS11 gene, which encodes a trehalose-6-phosphate synthase/phosphatase. Knockout of TPS11 function abolished trehalose increases in GPA-infested leaves of the tps11 mutant plant and attenuated defense against GPA. Trehalose application restored resistance in the tps11 mutant, confirming that the lack of trehalose accumulation is associated with the inability of the tps11 mutant to control GPA infestation. Resistance against GPA was also higher in the trehalose hyper-accumulating tre1 mutant and in bacterial otsB gene-expressing plants, further supporting the conclusion that trehalose plays a role in Arabidopsis defense against GPA. Evidence presented here indicates that TPS11-dependent trehalose regulates expression of the PHYTOALEXIN DEFICIENT4 gene, which is a key modulator of defenses against GPA. TPS11 also promotes the re-allocation of carbon into starch at the expense of sucrose, the primary plant-derived carbon and energy source for the insect. Our results provide a framework for the signaling function of TPS11-dependent trehalose in plant stress responses, and also reveal an important contribution of starch in controlling the severity of aphid infestation.


Asunto(s)
Áfidos/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Hidrolasas de Éster Carboxílico/metabolismo , Glucosiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Trehalosa/metabolismo , Animales , Antibiosis , Áfidos/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Monoéster Fosfórico Hidrolasas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Eliminación de Secuencia , Transducción de Señal , Almidón/metabolismo , Estrés Fisiológico , Sacarosa/metabolismo , Trehalosa/farmacología
16.
BMC Plant Biol ; 11: 67, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496250

RESUMEN

BACKGROUND: Cytochrome P450 monooxygenases form a large superfamily of enzymes that catalyze diverse reactions. The P450 SU1 gene from the soil bacteria Streptomyces griseolus encodes CYP105A1 which acts on various substrates including sulfonylurea herbicides, vitamin D, coumarins, and based on the work presented here, brassinosteroids. P450 SU1 is used as a negative-selection marker in plants because CYP105A1 converts the relatively benign sulfonyl urea pro-herbicide R7402 into a highly phytotoxic product. Consistent with its use for negative selection, transgenic Arabidopsis plants were generated with P450 SU1 situated between recognition sequences for FLP recombinase from yeast to select for recombinase-mediated excision. However, unexpected and prominent developmental aberrations resembling those described for mutants defective in brassinosteroid signaling were observed in many of the lines. RESULTS: The phenotypes of the most affected lines included severe stunting, leaf curling, darkened leaves characteristic of anthocyanin accumulation, delayed transition to flowering, low pollen and seed yields, and delayed senescence. Phenotype severity correlated with P450 SU1 transcript abundance, but not with transcript abundance of other experimental genes, strongly implicating CYP105A1 as responsible for the defects. Germination and seedling growth of transgenic and control lines in the presence and absence of 24-epibrassinolide indicated that CYP105A1 disrupts brassinosteroid signaling, most likely by inactivating brassinosteroids. CONCLUSIONS: Despite prior use of this gene as a genetic tool, deleterious growth in the absence of R7402 has not been elaborated. We show that this gene can cause aberrant growth by disrupting brassinosteroid signaling and affecting homeostasis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Transducción de Señal , Streptomyces/enzimología , Arabidopsis/genética , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/genética , Ingeniería Genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
17.
Curr Opin Plant Biol ; 59: 101968, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33418402

RESUMEN

By specifying patterns of determinate and indeterminate growth, FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT) and TERMINAL FLOWER 1/SELF-PRUNING (SP) regulate plant architecture. Though well characterized in Arabidopsis, the impacts of these genes on the architectures of diverse crops cultivated in different environments, and their potential to enhance crop productivity and management, are less well addressed. Cotton (Gossypium spp.) is naturally a short-day photoperiodic perennial that is now grown primarily as a day-neutral, annual row crop. Different environments and cultivation practices favor specific growth habits to optimize yield, and in cotton, especially in regions that rely heavily on mechanized harvest, the trend has been to more determinate varieties. Identifying and functionally characterizing SFT and SP homologs in cotton uncovered new aspects of how ratios of indeterminate and determinate growth are balanced, and unraveling their genetic networks emphasized how broadly these gene products affect cotton growth habits.


Asunto(s)
Arabidopsis , Gossypium , Flores/genética , Gossypium/genética , Hábitos , Fotoperiodo
18.
Front Plant Sci ; 11: 273, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256508

RESUMEN

A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.

19.
BMC Plant Biol ; 9: 11, 2009 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19161628

RESUMEN

BACKGROUND: Cotton (Gossypium hirsutum L) is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. Domesticated cotton makes these reserves available to developing seeds which impacts seed yield. The goals of these analyses were to identify genes and physiological pathways that establish cotton stems and roots as physiological sinks and investigate the role these pathways play in cotton development during seed set. RESULTS: Analysis of field-grown cotton plants indicated that starch levels peaked about the time of first anthesis and then declined similar to reports in greenhouse-grown cotton plants. Starch accumulated along the length of the stem and the shape and size of the starch grains from stems were easily distinguished from transient starch. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with starch synthesis, starch degradation, hexose metabolism, raffinose synthesis and trehalose synthesis. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in selected tissues. CONCLUSION: In domesticated cotton starch stored prior to flowering was available to support seed production. Starch accumulation observed in young field-grown plants was not observed in greenhouse grown plants. A suite of genes associated with starch biosynthesis was identified. The pathway for starch utilization after flowering was associated with an increase in expression of a glucan water dikinase gene as has been implicated in utilization of transient starch. Changes in raffinose levels and levels of expression of genes controlling trehalose and raffinose biosynthesis were also observed in vegetative cotton tissues as plants age.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Gossypium/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Almidón/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Gossypium/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/genética , Tallos de la Planta/genética , ARN de Planta/metabolismo , Almidón/análisis
20.
BMC Plant Biol ; 9: 7, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19154603

RESUMEN

BACKGROUND: AtSUC2 (At1g22710) from Arabidopsis thaliana encodes a phloem-localized sucrose/proton symporter required for efficient photoassimilate transport from source tissues to sink tissues. AtSUC2 plays a key role in coordinating the demands of sink tissues with the output capacity of source leaves, and in maintaining phloem hydrostatic pressure during changes in plant-water balance. Expression and activity are regulated, both positively and negatively, by developmental (sink to source transition) and environmental cues, including light, diurnal changes, photoassimilate levels, turgor pressure, drought and osmotic stress, and hormones. RESULTS: To assess the importance of this regulation to whole-plant growth and carbon partitioning, AtSUC2 cDNA was expressed from two exotic, phloem-specific promoters in a mutant background debilitated for AtSUC2 function. The first was a promoter element from Commelina Yellow Mottle Virus (CoYMV), and the second was the rolC promoter from Agrobacterium rhizogenes. CoYMVp::AtSUC2 cDNA restored growth and carbon partitioning to near wild-type levels, whereas plants harboring rolCp::AtSUC2 cDNA showed only partial complementation. CONCLUSION: Expressing AtSUC2 cDNA from exotic, phloem-specific promoters argues that strong, phloem-localized expression is sufficient for efficient transport. Expressing AtSUC2 from promoters that foster efficient phloem transport but are subject to regulatory cascades different from the endogenous sucrose/proton symporter genes has implications for biotechnology.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , ADN Bacteriano/genética , ADN Complementario/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Floema/genética , Proteínas de Plantas/genética , Sacarosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA