Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 334-351.e20, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33434495

RESUMEN

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas (TCGA) into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, master regulator block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations.


Asunto(s)
Neoplasias/genética , Transcripción Genética , Adenocarcinoma/genética , Animales , Línea Celular Tumoral , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Ratones Desnudos , Mutación/genética , Reproducibilidad de los Resultados
2.
Int J Cancer ; 145(12): 3194-3206, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199503

RESUMEN

Due to the anatomical continuity of the uterine cavity with the cervix, genomic exploitation of material from routine Pap smears and other noninvasive sampling methods represent a unique opportunity to detect signs of disease using biological material shed from the upper genital tract. Recent research findings offer a promising perspective in the detection of endometrial cancer, but certain questions need to be addressed in order to accelerate the implementation of novel technologies in a routine screening or clinical setting. We discuss here new perspectives on detection of endometrial cancer using genomic and other biomarkers in minimally invasive sampling methods with a special focus on public health classic screening criteria, highlighting current gaps in knowledge.


Asunto(s)
Neoplasias Endometriales/diagnóstico , Biomarcadores de Tumor/genética , Detección Precoz del Cáncer/métodos , Neoplasias Endometriales/genética , Femenino , Humanos , Tamizaje Masivo/métodos
3.
Proc Natl Acad Sci U S A ; 110(37): E3506-15, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23918374

RESUMEN

Combinatorial activation of PI3-kinase and RAS signaling occurs frequently in advanced prostate cancer and is associated with adverse patient outcome. We now report that the oncogenic Ets variant 4 (Etv4) promotes prostate cancer metastasis in response to coactivation of PI3-kinase and Ras signaling pathways in a genetically engineered mouse model of highly penetrant, metastatic prostate cancer. Using an inducible Cre driver to simultaneously inactivate Pten while activating oncogenic Kras and a fluorescent reporter allele in the prostate epithelium, we performed lineage tracing in vivo to define the temporal and spatial occurrence of prostate tumors, disseminated tumor cells, and metastases. These analyses revealed that though disseminated tumors cells arise early following the initial occurrence of prostate tumors, there is a significant temporal lag in metastasis, which is temporally coincident with the up-regulation of Etv4 expression in primary tumors. Functional studies showed that knockdown of Etv4 in a metastatic cell line derived from the mouse model abrogates the metastatic phenotype but does not affect tumor growth. Notably, expression and activation of ETV4, but not other oncogenic ETS genes, is correlated with activation of both PI3-kinase and Ras signaling in human prostate tumors and metastases. Our findings indicate that ETV4 promotes metastasis in prostate tumors that have activation of PI3-kinase and Ras signaling, and therefore, ETV4 represents a potential target of therapeutic intervention for metastatic prostate cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/secundario , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas ras/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Genes ras , Ingeniería Genética , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Oncogenes , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-ets/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ets/genética , Transducción de Señal , Factores de Transcripción/genética , Regulación hacia Arriba
4.
PLoS Biol ; 9(11): e1001199, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22110403

RESUMEN

Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/metabolismo , Polaridad Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Aurora Quinasa A , Aurora Quinasas , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Mama/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Polaridad Celular/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Genes BRCA1 , Genes BRCA2 , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Células HeLa , Heterocigoto , Humanos , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Estrógenos/análisis
5.
Proc Natl Acad Sci U S A ; 108(11): 4394-9, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368194

RESUMEN

MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression at the posttranscriptional level and are critical for many cellular pathways. The disruption of miRNAs and their processing machineries also contributes to the development of human tumors. A common scenario for miRNA expression in carcinogenesis is emerging that shows that impaired miRNA production and/or down-regulation of these transcripts occurs in many neoplasms. Several of these lost miRNAs have tumor-suppressor features, so strategies to restore their expression globally in malignancies would be a welcome addition to the current therapeutic arsenal against cancer. Herein, we show that the small molecule enoxacin, a fluoroquinolone used as an antibacterial compound, enhances the production of miRNAs with tumor suppressor functions by binding to the miRNA biosynthesis protein TAR RNA-binding protein 2 (TRBP). The use of enoxacin in human cell cultures and xenografted, orthotopic, and metastatic mouse models reveals a TRBP-dependent and cancer-specific growth-inhibitory effect of the drug. These results highlight the key role of disrupted miRNA expression patterns in tumorigenesis, and suggest a unique strategy for restoring the distorted microRNAome of cancer cells to a more physiological setting.


Asunto(s)
Antineoplásicos/farmacología , Enoxacino/farmacología , MicroARNs/metabolismo , Neoplasias/patología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , MicroARNs/biosíntesis , Mutación/genética , Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cell Chem Biol ; 31(5): 973-988.e4, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38335967

RESUMEN

The (poly)pharmacology of drug metabolites is seldom comprehensively characterized in drug discovery. However, some drug metabolites can reach high plasma concentrations and display in vivo activity. Here, we use computational and experimental methods to comprehensively characterize the kinase polypharmacology of M324, the major metabolite of the PARP1 inhibitor rucaparib. We demonstrate that M324 displays unique PLK2 inhibition at clinical concentrations. This kinase activity could have implications for the efficacy and safety of rucaparib and therefore warrants further clinical investigation. Importantly, we identify synergy between the drug and the metabolite in prostate cancer models and a complete reduction of α-synuclein accumulation in Parkinson's disease models. These activities could be harnessed in the clinic or open new drug discovery opportunities. The study reported here highlights the importance of characterizing the activity of drug metabolites to comprehensively understand drug response in the clinic and exploit our current drug arsenal in precision medicine.


Asunto(s)
Indoles , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Indoles/farmacología , Indoles/química , Indoles/metabolismo , Animales , Masculino , Ratones , Sinergismo Farmacológico , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
7.
Sci Adv ; 9(11): eade2175, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921044

RESUMEN

Mutations of the androgen receptor (AR) associated with prostate cancer and androgen insensitivity syndrome may profoundly influence its structure, protein interaction network, and binding to chromatin, resulting in altered transcription signatures and drug responses. Current structural information fails to explain the effect of pathological mutations on AR structure-function relationship. Here, we have thoroughly studied the effects of selected mutations that span the complete dimer interface of AR ligand-binding domain (AR-LBD) using x-ray crystallography in combination with in vitro, in silico, and cell-based assays. We show that these variants alter AR-dependent transcription and responses to anti-androgens by inducing a previously undescribed allosteric switch in the AR-LBD that increases exposure of a major methylation target, Arg761. We also corroborate the relevance of residues Arg761 and Tyr764 for AR dimerization and function. Together, our results reveal allosteric coupling of AR dimerization and posttranslational modifications as a disease mechanism with implications for precision medicine.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/química , Unión Proteica , Mutación , Neoplasias de la Próstata/genética , Procesamiento Proteico-Postraduccional
8.
Mol Carcinog ; 51(9): 746-53, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22125164

RESUMEN

Allelic imbalances at chromosome 4p have been largely documented in many different tumor types. In colorectal cancer, loss of heterozygosity (LOH) at 4p15 has been associated with tumor aggressiveness and poor patient outcome, however no target genes in the region have been identified to date. Since stromal interaction molecule 2 (STIM2) is located at 4p15.2 and has been proposed as a candidate gene for this region in glioblastoma multiforme, we aimed at investigating the role of STIM2 in colorectal cancer. We studied STIM2 transcript expression levels in a collection of xenografted primary colorectal tumors (n = 20) and a well-annotated tumor series of colorectal cancer (n = 140). We observed an overexpression of STIM2 in 63.5% of the cases that was associated with a less invasive phenotype. In vitro and in vivo functional studies with colon cancer cell lines revealed that overexpression of STIM2 reduced cell proliferation and tumor growth, respectively. Our work presents several lines of evidence indicating that STIM2 overexpression is a frequent trait in colorectal cancer that results in cell growth suppression, certifying that even in the absence of somatic genetic or epigenetic alterations, recurrent regions of LOH should still be considered a hallmark for the presence of relevant genes for tumorigenesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Genes Supresores de Tumor , Glicoproteínas de Membrana/metabolismo , Animales , Apoptosis , Western Blotting , Moléculas de Adhesión Celular/genética , Células Cultivadas , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/genética , ADN de Neoplasias/genética , Humanos , Técnicas para Inmunoenzimas , Hibridación Fluorescente in Situ , Pérdida de Heterocigocidad , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Desnudos , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Molécula de Interacción Estromal 2 , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Pers Med ; 12(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35887570

RESUMEN

Screenwide is a case-control study (2017−2021) including women with incident endometrial and ovarian cancers (EC and OC), BRCA1/2 and MMR pathogenic variant carriers, and age-matched controls from three centers in Spain. Participants completed a personal interview on their sociodemographic factors, occupational exposure, medication, lifestyle, and medical history. We collected biological specimens, including blood samples, self-collected vaginal specimens, cervical pap-brush samples, uterine specimens, and, when available, tumor samples. The planned analyses included evaluation of the potential risk factors for EC/OC; evaluation of molecular biomarkers in minimally invasive samples; evaluation of the cost-effectiveness of molecular tests; and the generation of predictive scores to integrate different epidemiologic, clinical, and molecular factors. Overall, 182 EC, 69 OC, 98 BRCA pathogenic variant carriers, 104 MMR pathogenic variant carriers, and 385 controls were enrolled. The overall participation rate was 85.7%. The pilot study using 61 samples from nine EC cases and four controls showed that genetic variants at the variant allele fraction > 5% found in tumors (n = 61 variants across the nine tumors) were detected in paired endometrial aspirates, clinician-collected cervical samples, and vaginal self-samples with detection rates of 90% (55/61), 79% (48/61), and 72% (44/61) by duplex sequencing, respectively. Among the controls, only one somatic mutation was detected in a cervical sample. We enrolled more than 800 women to evaluate new early detection strategies. The preliminary data suggest that our methodological approach could be useful for the early detection of gynecological cancers.

10.
Cancer Lett ; 523: 162-169, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34517086

RESUMEN

Taxanes - docetaxel and cabazitaxel - are the most active chemotherapy drugs currently used for the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, despite a good initial response and survival benefit, nearly all patients eventually develop resistance, which is an important barrier to long-term survival. Resistance to taxanes is also associated with cross-resistance to androgen receptor signaling inhibitors (ARSIs). Unfortunately, other than platinum-based treatments, which have demonstrated some benefit in a subset of patients with Aggressive Variant Prostate Cancer (AVPC), few therapeutic options are available to patients progressing to taxanes. Hence, more research is required to determine whether platinum-based chemotherapy will confer a survival benefit in mCRPC, and the identification of predictive biomarkers and the clinical evaluation of platinum compounds in molecularly selected patients is an urgent but unmet clinical need. The present review focuses on the current status of chemotherapy treatments in mCRPC, interactions with androgen deprivation therapy (ADT) and novel ARSIs, and the main mechanisms of resistance. We will examine the impact of platinum-based treatments in mCRPC and summarize the known predictive biomarkers of platinum response. Finally, future approaches and avenues will be discussed.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Receptores Androgénicos/uso terapéutico , Reparación del ADN , Resistencia a Antineoplásicos , Humanos , Masculino , Metástasis de la Neoplasia , Platino (Metal)/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Taxoides/uso terapéutico
11.
Sci Transl Med ; 13(580)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568520

RESUMEN

Among the pleotropic roles of transforming growth factor-ß (TGFß) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFß signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown. Here, we show that TGFß broadly controls the DNA damage response and suppresses alt-EJ genes that are associated with genomic instability. Mechanistically based TGFß and alt-EJ gene expression signatures were anticorrelated in glioblastoma, squamous cell lung cancer, and serous ovarian cancer. Consistent with error-prone repair, more of the genome was altered in tumors classified as low TGFß and high alt-EJ, and the corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-EJ genes were coordinately expressed and anticorrelated with TGFß competency in 16 of 17 cancer types tested. Moreover, regardless of cancer type, tumors classified as low TGFß and high alt-EJ were characterized by an insertion-deletion mutation signature containing short microhomologies and were more sensitive to genotoxic therapy. Collectively, experimental studies revealed that loss or inhibition of TGFß signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ. Translation of this mechanistic relationship into gene expression signatures identified a robust anticorrelation that predicts response to genotoxic therapies, thereby expanding the potential therapeutic scope of TGFß biology.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Neoplasias , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN/genética , Humanos , Neoplasias/genética , Factor de Crecimiento Transformador beta
12.
Eur Urol ; 79(6): 722-733, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33153817

RESUMEN

BACKGROUND: Taxanes are the most active chemotherapy agents in metastatic castration-resistant prostate cancer (mCRPC) patients; yet, resistance occurs almost invariably, representing an important clinical challenge. Taxane-platinum combinations have shown clinical benefit in a subset of patients, but the mechanistic basis and biomarkers remain elusive. OBJECTIVE: To identify mechanisms and response indicators for the antitumor efficacy of taxane-platinum combinations in mCRPC. DESIGN, SETTING, AND PARTICIPANTS: Transcriptomic data from a publicly available mCRPC dataset of taxane-exposed and taxane-naïve patients were analyzed to identify response indicators and emerging vulnerabilities. Functional and preclinical validation was performed in taxane-resistant mCRPC cell lines and genetically engineered mouse models (GEMMs). INTERVENTION: Metastatic CRPC cells were treated with docetaxel, cisplatin, carboplatin, the CXCR2 antagonist SB265610, and the BCL-2 inhibitor venetoclax. Gain and loss of function in culture of CXCR2 and BCL-2 were achieved by overexpression or siRNA silencing. Preclinical assays in GEMM mice tested the antitumor efficacy of taxane-platinum combinations. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Proliferation, apoptosis, and colony assays measured drug activity in vitro. Preclinical endpoints in mice included growth, survival, and histopathology. Changes in CXCR2, BCL-2, and chemokines were analyzed by reverse transcriptase quantitative polymerase chain reaction and Western blot. Human expression data were analyzed using Gene Set Enrichment Analysis, hierarchical clustering, and correlation studies. GraphPad Prism software and R-studio were used for statistical and data analyses. RESULTS AND LIMITATIONS: Transcriptomic data from taxane-exposed human mCRPC tumors correlate with a marked negative enrichment of apoptosis and inflammatory response pathways accompanied by a marked downregulation of CXCR2 and BCL-2. Mechanistically, we show that docetaxel inhibits CXCR2 and that BCL-2 downregulation occurs as a downstream effect. Further, we demonstrated in experimental models that the sensitivity to cisplatin is dependent on CXCR2 and BCL-2, and that targeting them sensitizes prostate cancer (PC) cells to cisplatin. In vivo taxane-platinum combinations are highly synergistic, and previous exposure to taxanes sensitizes mCRPC tumors to second-line cisplatin treatment. CONCLUSIONS: The hitherto unappreciated attenuation of the CXCR2/BCL-2 axis in taxane-treated mCRPC patients is an acquired vulnerability with potential predictive activity for platinum-based treatments. PATIENT SUMMARY: A subset of patients with aggressive and therapy-resistant prostate cancer benefits from taxane-platinum combination chemotherapy; however, we lack the mechanistic understanding of how that synergistic effect occurs. Here, using patient data and preclinical models, we found that taxanes reduce cancer cell escape mechanisms to chemotherapy-induced cell death, hence making these cells more vulnerable to additional platinum treatment.


Asunto(s)
Antineoplásicos , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración , Taxoides/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/uso terapéutico , Docetaxel/uso terapéutico , Humanos , Masculino , Ratones , Platino (Metal)/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico
13.
Cancer Cytopathol ; 128(11): 792-802, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32202704

RESUMEN

Cervico-vaginal cytology is primarily a cervical cancer screening test. The anatomical continuity of the uterine cavity with the cervix makes the Papanicolaou (Pap) test accessible to evaluate signs of disease shed from the endometrium. Our aim was to determine the sensitivity of routine Pap test in endometrial carcinoma detection and its relationship with clinico-pathologic factors. We performed a systematic review of studies reporting Pap test results prior to diagnosis of or surgery for endometrial carcinoma between 1990 and 2018 in PubMed or Web of Science. Two independent reviewers extracted data and assessed study quality using an adapted Newcastle-Ottawa Quality Assessment Scale and Quality Assessment of Diagnostic Accuracy Studies tool. We identified 45 studies including a total of 6599 women with endometrial cancer. Abnormal Pap test results prior to diagnosis of or surgery for endometrial carcinoma were observed in 45% (95% CI, 40%-50%) of study participants. This percentage was significantly higher among those of non-endometrioid histology compared with endometrioid subtypes (77% [95% CI, 66%-87%] vs 44% [95% CI, 34%-53%], respectively; P heterogeneity <.001). Several clinico-pathologic factors were related to a higher percentage of abnormal Pap test results, including high-stage, myometrial invasion >50%, high histological grade, positive peritoneal cytology, presence of lymph node metastasis, cervical involvement, and lymphovascular invasion (P heterogeneity <.05 for all variables). Routine cervical cytology can detect endometrial cancer in almost half of patients, whereas sensitivity is higher among individuals with non-endometrioid histology or more advanced cancers. This review summarizes the current clinical and prognostic value of cervical cytology in endometrial carcinoma. Recent technological developments using molecular biomarkers may improve accuracy for early cancer detection.


Asunto(s)
Cuello del Útero/patología , Neoplasias Endometriales/diagnóstico , Vagina/patología , Citodiagnóstico , Femenino , Humanos , Curva ROC
14.
Mol Cancer ; 8: 46, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19586538

RESUMEN

We isolate and culture carcinoma-associated fibroblasts (CAFs) from primary tumour (CAFpt), CAFs from corresponding synchronous liver metastasis (CAFlm) as well as normal colonic fibroblasts (NCF) from the same patient. From these cultures, conditioned media (CM) was obtained. Culture of a wide panel of colorectal and pancreatic cell lines in CM from CAFlm resulted in overexpression of mRNA PRL-3 and higher overexpression in CAFs than in non-activated fibroblasts. Moreover PRL-3 mRNA expression correlates with expression of alpha-SMA and deposition of collagen fibrils in the stroma. We demonstrate that products secreted by CAFs trigger PRL-3 overexpression in cancer cells. Identification of these factors may contribute to new stroma-targeted therapies for desmoplastic tumours.


Asunto(s)
Neoplasias Colorrectales/enzimología , Fibroblastos/enzimología , Proteínas de Neoplasias/biosíntesis , Neoplasias Pancreáticas/enzimología , Proteínas Tirosina Fosfatasas/biosíntesis , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Medios de Cultivo Condicionados , Células Epiteliales/enzimología , Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Modelos Logísticos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Tirosina Fosfatasas/genética , Células del Estroma/enzimología
15.
Cancers (Basel) ; 11(3)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871108

RESUMEN

Germline and somatic aberrations in DNA damage repair (DDR) genes are more prevalent in prostate cancer than previously recognized, with BRCA2 as the most commonly altered gene. Germline mutations in BRCA2 have been linked to poor prognosis when patients are managed under the protocols currently approved for prostate cancer. The impact of germline mutations in other DDR genes beyond BRCA2 remain unclear. Importantly, a quarter of prostate cancer patients identified as germline mutation carriers lack a family history of cancer. The clinical implications of somatic DDR defects are yet to be elucidated. Poly ADP-ribose polymerase (PARP) inhibitors and platinum-based chemotherapy have proven to be effective in the treatment of other tumor types linked to BRCA1 and BRCA2 alterations and several trials are currently evaluating their efficacy in prostate cancer. Here, we summarize the available evidence regarding the prevalence of somatic and germline DDR defects in prostate cancer; their association with clinical outcomes; the trials assessing the efficacy of new therapies that exploit DDR defects in prostate cancer and briefly discuss some uncertainties about the most appropriate management for these patients.

16.
Cancer Epidemiol ; 61: 129-132, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31238232

RESUMEN

INTRODUCTION: The current availability of genomic information represents an opportunity to develop new strategies for early detection of cancer. New molecular tests for endometrial cancer may improve performance and failure rates of histological aspirate-based diagnosis, and provide promising perspectives for a potential screening scenario. However, the selection of relevant biomarkers to develop efficient strategies can be a challenge. MATERIALS AND METHODS: We developed an algorithm to identify the largest number of patients with endometrial cancer using the minimum number of somatic mutations based on The Cancer Genome Atlas (TCGA) dataset. RESULTS: The algorithm provided the number of subjects with mutations (sensitivity) for a given number of biomarkers included in the signature. For instance, by evaluating the 50 most representative point mutations, up to 81.9% of endometrial cancers can be identified in the TCGA dataset. At gene level, a 92.9% sensitivity can be obtained by interrogating five genes. DISCUSSION: We developed a computational method to aid in the selection of relevant genomic biomarkers in endometrial cancer that can be adapted to other cancer types or diseases.


Asunto(s)
Detección Precoz del Cáncer/métodos , Neoplasias Endometriales/diagnóstico , Genómica/métodos , Algoritmos , Femenino , Humanos , Mutación
17.
Curr Mol Biol Rep ; 4(2): 101-115, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29888169

RESUMEN

PURPOSE OF REVIEW: An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. RECENT FINDINGS: Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. SUMMARY: Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

19.
Nat Commun ; 9(1): 5201, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518758

RESUMEN

Deciphering cell-intrinsic mechanisms of metastasis progression in vivo is essential to identify novel therapeutic approaches. Here we elucidate cell-intrinsic drivers of metastatic prostate cancer progression through analyses of genetically engineered mouse models (GEMM) and correlative studies of human prostate cancer. Expression profiling of lineage-marked cells from mouse primary tumors and metastases defines a signature of de novo metastatic progression. Cross-species master regulator analyses comparing this mouse signature with a comparable human signature identifies conserved drivers of metastatic progression with demonstrable clinical and functional relevance. In particular, nuclear receptor binding SET Domain Protein 2 (NSD2) is robustly expressed in lethal prostate cancer in humans, while its silencing inhibits metastasis of mouse allografts in vivo. We propose that cross-species analysis can elucidate mechanisms of metastasis progression, thus providing potential additional therapeutic opportunities for treatment of lethal prostate cancer.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética
20.
Clin Cancer Res ; 24(15): 3755-3766, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29618620

RESUMEN

Purpose: To investigate the genetic basis of cisplatin resistance as efficacy of cisplatin-based chemotherapy in the treatment of distinct malignancies is often hampered by intrinsic or acquired drug resistance of tumor cells.Experimental Design: We produced 14 orthoxenograft transplanting human nonseminomatous testicular germ cell tumors (TGCT) in mice, keeping the primary tumor features in terms of genotype, phenotype, and sensitivity to cisplatin. Chromosomal and genetic alterations were evaluated in matched cisplatin-sensitive and their counterpart orthoxenografts that developed resistance to cisplatin in nude mice.Results: Comparative genomic hybridization analyses of four matched orthoxenografts identified recurrent chromosomal rearrangements across cisplatin-resistant tumors in three of them, showing gains at 9q32-q33.1 region. We found a clinical correlation between the presence of 9q32-q33.1 gains in cisplatin-refractory patients and poorer overall survival (OS) in metastatic germ cell tumors. We studied the expression profile of the 60 genes located at that genomic region. POLE3 and AKNA were the only two genes deregulated in resistant tumors harboring the 9q32-q33.1 gain. Moreover, other four genes (GCS, ZNF883, CTR1, and FLJ31713) were deregulated in all five resistant tumors independently of the 9q32-q33.1 amplification. RT-PCRs in tumors and functional analyses in Caenorhabditis elegans (C. elegans) indicate that the influence of 9q32-q33.1 genes in cisplatin resistance can be driven by either up- or downregulation. We focused on glucosylceramide synthase (GCS) to demonstrate that the GCS inhibitor DL-threo-PDMP resensitizes cisplatin-resistant germline-derived orthoxenografts to cisplatin.Conclusions: Orthoxenografts can be used preclinically not only to test the efficiency of drugs but also to identify prognosis markers and gene alterations acting as drivers of the acquired cisplatin resistance. Clin Cancer Res; 24(15); 3755-66. ©2018 AACR.


Asunto(s)
Cisplatino/efectos adversos , ADN Polimerasa III/genética , Proteínas de Unión al ADN/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Proteínas Nucleares/genética , Nucleoproteínas/genética , Neoplasias Testiculares/tratamiento farmacológico , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas/efectos de los fármacos , Cromosomas Humanos Par 9/efectos de los fármacos , Cromosomas Humanos Par 9/genética , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Mutación Puntual/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA