RESUMEN
The contribution of the vasculature in the development and progression of heart failure (HF) syndromes is poorly understood and often neglected. Incorporating both arterial and venous systems, the vasculature plays a significant role in the regulation of blood flow throughout the body in meeting its metabolic requirements. A deterioration or imbalance between the cardiac and vascular interaction can precipitate acute decompensated HF in both preserved and reduced ejection fraction phenotypes. This is characterised by the increasingly recognised concept of ventricular-arterial coupling: a well-balanced relationship between ventricular and vascular stiffness, which has major implications in HF. Often, the cause of decompensation is unknown, with international guidelines mainly centred on arrhythmia, infection, acute coronary syndrome and its mechanical complications as common causes of decompensation; the vascular component is often underrecognised. A better understanding of the vascular contribution in cardiovascular failure can improve risk stratification, earlier diagnosis and facilitate earlier optimal treatment. This review focuses on the role of the vasculature by integrating the concepts of ventricular-arterial coupling, arterial stiffness and venous return in a failing heart.
Asunto(s)
Insuficiencia Cardíaca , Humanos , Volumen Sistólico/fisiología , Ventrículos Cardíacos , HemodinámicaRESUMEN
Background: 3% of kidney transplant recipients return to dialysis annually upon allograft failure. Development of antibodies (Ab) against human leukocyte antigens (HLA) is a validated prognostic biomarker of allograft failure. We tested whether screening for HLA Ab, combined with an intervention to improve adherence and optimization of immunosuppression could prevent allograft failure. Methods: Prospective, open-labelled randomised biomarker-based strategy (hybrid) trial in 13 UK transplant centres [EudraCT (2012-004308-36) and ISRCTN (46157828)]. Patients were randomly allocated (1:1) to unblinded or double-blinded arms and screened every 8 months. Unblinded HLA Ab+ patients were interviewed to encourage medication adherence and had tailored optimisation of Tacrolimus, Mycophenolate mofetil and Prednisolone. The primary outcome was time to graft failure in an intention to treat analysis. The trial had 80% power to detect a hazard ratio of 0.49 in donor specific antibody (DSA)+ patients. Findings: From 11/9/13 to 27/10/16, 5519 were screened for eligibility and 2037 randomised (1028 to unblinded care and 1009 to double blinded care). We identified 198 with DSA and 818 with non-DSA. Development of DSA, but not non-DSA was predictive of graft failure. HRs for graft failure in unblinded DSA+ and non-DSA+ groups were 1.54 (95% CI: 0.72 to 3.30) and 0.97 (0.54-1.74) respectively, providing no evidence of an intervention effect. Non-inferiority for the overall unblinded versus blinded comparison was not demonstrated as the upper confidence limit of the HR for graft failure exceeded 1.4 (1.02, 95% CI: 0.72 to 1.44). The only secondary endpoint reduced in the unblinded arm was biopsy-proven rejection. Interpretation: Intervention to improve adherence and optimize immunosuppression does not delay failure of renal transplants after development of DSA. Whilst DSA predicts increased risk of allograft failure, novel interventions are needed before screening can be used to direct therapy. Funding: The National Institute for Health Research Efficacy and Mechanism Evaluation programme grant (ref 11/100/34).
RESUMEN
BACKGROUND: Chronic rejection is the single biggest cause of premature kidney graft failure. HLA antibodies (Ab) are an established prognostic biomarker for premature graft failure so there is a need to test whether treatment decisions based on the presence of the biomarker can alter prognosis. The Optimised TacrolimuS and MMF for HLA Antibodies after Renal Transplantation (OuTSMART) trial combines two elements. Firstly, testing whether a routine screening programme for HLA Ab in all kidney transplant recipients is useful by comparing blinding versus unblinding of HLA Ab status. Secondly, for those found to be HLA Ab+, testing whether the introduction of a standard optimisation treatment protocol can reduce graft failure rates. METHODS: OuTSMART is a prospective, open-labelled, randomised biomarker-based strategy (hybrid) trial, with two arms stratified by biomarker (HLA Ab) status. The primary outcome was amended from graft failure rates at 3 years to time to graft failure to increase power and require fewer participants to be recruited. Length of follow-up subsequently is variable, with all participants followed up for at least 43 months up to a maximum of 89 months. The primary outcome will be analysed using Cox regression adjusting for stratification factors. Analyses will be according to the intention-to-treat using all participants as randomised. Outcomes will be analysed comparing standard care versus biomarker-led care groups within the HLA Ab+ participants (including those who become HLA Ab+ through re-screening) as well as between HLA-Ab-unblinded and HLA-Ab-blinded groups using all participants. DISCUSSION: Changes to the primary outcome permit recruitment of fewer participants to achieve the same statistical power. Pre-stating the statistical analysis plan guards against changes to the analysis methods at the point of analysis that might otherwise introduce bias through knowledge of the data. Any deviations from the analysis plan will be justified in the final report. TRIAL REGISTRATION: ISRCTN registry, ID: ISRCTN46157828 . Registered on 26 March 2013; EudraCT 2012-004308-36 . Registered on 10 December 2012.