RESUMEN
Compensatory angiogenesis is an important adaptation for recovery from critical ischemia. We recently identified 20-hydroxyeicosatetraenoic acid (20-HETE) as a novel contributor of ischemia-induced angiogenesis. However, the precise mechanisms by which ischemia promotes 20-HETE increases that drive angiogenesis are unknown. This study aims to address the hypothesis that inflammatory neutrophil-derived myeloperoxidase (MPO) and hypochlorous acid (HOCl) critically contribute to 20-HETE increases leading to ischemic angiogenesis. Using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry, Laser Doppler Perfusion Imaging, and Microvascular Density analysis, we found that neutrophil depletion and MPO knockout mitigate angiogenesis and 20-HETE production in the gracilis muscles of mice subjected to hindlimb ischemia. Furthermore, we found MPO and HOCl to be elevated in these tissues postischemia as assessed by immunofluorescence microscopy and in vivo live imaging of HOCl. Next, we demonstrated that the additions of either HOCl or an enzymatic system for generating HOCl to endothelial cells increase the expression of CYP4A11 and its product, 20-HETE. Finally, pharmacological interference of hypoxia inducible factor (HIF) signaling results in ablation of HOCl-induced CYP4A11 transcript and significant reductions in CYP4A11 protein. Collectively, we conclude that neutrophil-derived MPO and its product HOCl activate HIF-1α and CYP4A11 leading to increased 20-HETE production that drives postischemic compensatory angiogenesis. SIGNIFICANCE STATEMENT: Traditionally, neutrophil derived MPO and HOCl are exclusively associated in the innate immunity as potent bactericidal/virucidal factors. The present study establishes a novel paradigm by proposing a unique function for MPO/HOCl as signaling agents that drive critical physiological angiogenesis by activating the CYP4A11-20-HETE signaling axis via a HIF-1α-dependent mechanism. The findings from this study potentially identify novel therapeutic targets for the treatment of ischemia and other diseases associated with abnormal angiogenesis.
Asunto(s)
Ácido Hipocloroso , Peroxidasa , Animales , Células Endoteliales/metabolismo , Ácidos Hidroxieicosatetraenoicos , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacología , Isquemia/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neutrófilos/metabolismo , Peroxidasa/metabolismoRESUMEN
Two 4-fluoro-L-glutamine diastereoisomers [(2S,4R)-4-FGln, (2S,4S)-4-FGln] were previously developed for positron emission tomography. Label uptake into two tumor cell types was greater with [18F](2S,4R)-4-FGln than with [18F](2S,4S)-4-FGln. In the present work we investigated the enzymology of two diastereoisomers of 4-FGln, two diastereoisomers of 4-fluoroglutamate (4-FGlu) (potential metabolites of the 4-FGln diastereoisomers) and another fluoro-derivative of L-glutamine [(2S,4S)-4-(3-fluoropropyl)glutamine (FP-Gln)]. The two 4-FGlu diastereoisomers were found to be moderate-to-good substrates relative to L-glutamate of glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase. Additionally, alanine aminotransferase was shown to catalyze an unusual γ-elimination reaction with both 4-FGlu diastereoisomers. Both 4-FGlu diastereoisomers were shown to be poor substrates, but strong inhibitors of glutamine synthetase. Both 4-FGln diastereoisomers were shown to be poor substrates compared to L-glutamine of glutamine transaminase L and α-aminoadipate aminotransferase. However, (2S,4R)-4-FGln was found to be a poor substrate of glutamine transaminase K, whereas (2S,4S)-4-FGln was shown to be an excellent substrate. By contrast, FP-Gln was found to be a poor substrate of all enzymes examined. Evidently, substitution of H in position 4 by F in L-glutamine/L-glutamate has moderate-to-profound effects on enzyme-catalyzed reactions. The present results: 1) show that 4-FGln and 4-FGlu diastereoisomers may be useful for studying active site topology of glutamate- and glutamine-utilizing enzymes; 2) provide a framework for understanding possible metabolic transformations in tumors of 18F-labeled (2S,4R)-4-FGln, (2S,4S)-4-FGln, (2S,4R)-4-FGlu or (2S,4S)-4-FGlu; and 3) show that [18F]FP-Gln is likely to be much less metabolically active in vivo than are the [18F]4-FGln diastereoisomers.
RESUMEN
Purpose Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[ 18 F]fluoropropionic acid ([ 18 F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. Procedures : Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [ 18 F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. Results Significantly higher cardiac [ 18 F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 min to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [ 18 F]FPA in tissues other than the heart. Co-administration of [ 18 F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. Conclusions [ 18 F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.
RESUMEN
Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine ß-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine ß-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by ß-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine ß-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed ß-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed ß-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed ß-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for ß-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.