Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(8): e5117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38356104

RESUMEN

It has been shown using proton magnetic resonance spectroscopy (1H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2:CH3) and IMCL concentration (measured as CH3), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.


Asunto(s)
Resistencia a la Insulina , Metabolismo de los Lípidos , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Ácidos Grasos/metabolismo , Tejido Adiposo/metabolismo , Espectroscopía de Resonancia Magnética
2.
J Chem Phys ; 144(24): 244101, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27369491

RESUMEN

We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA