Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur J Orthod ; 43(6): 708-717, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34476491

RESUMEN

BACKGROUND: Orthodontic implant migration has been clinically observed in presence of continuous loading forces. Recent studies indicate that osteocytes play a crucial role in this phenomenon. OBJECTIVES: Aim of this study was to investigate local osteocytic gene expression, protein expression, and bone micro-structure in peri-implant regions of pressure and tension. MATERIAL AND METHODS: The present work reports a complementary analysis to a previous micro-computed tomography study. Two customized mini-implants were placed in one caudal rat vertebra and connected by a nickel-titanium contraction spring generating different forces (i.e. 0, 0.5, 1.0, and 1.5 N). Either at 2 or 8 weeks, the vertebrae were harvested and utilized for 1. osteocytic gene expression using laser capture micro-dissection on frozen sections coupled with qPCR, 2. haematoxylin-eosin staining for qualitative and quantitative analyses, 3. immunofluorescence staining and analysis, and 4. bone-to-implant contact on undecalcified samples. RESULTS: At the two time points for all the performed analyses no significant differences were observed with respect to the applied force magnitudes and cell harvesting localization. However, descriptive histological analysis revealed remarkable bone remodelling at 2 weeks of loading. At 8 weeks the implants were osseointegrated and, especially in 1.0 and 1.5 N groups, newly formed bone presented a characteristic load bearing architecture with trabecula oriented in the direction of the loading. CONCLUSIONS: The present study confirmed that stress-induced bone remodelling is the biological mechanism of orthodontic implant migration. Bone apposition was found at 'tension' and 'pressure' sites thus limiting implant migration over time.


Asunto(s)
Implantes Dentales , Métodos de Anclaje en Ortodoncia , Animales , Remodelación Ósea , Humanos , Oseointegración , Ratas , Columna Vertebral , Titanio , Microtomografía por Rayos X
2.
Mol Psychiatry ; 24(7): 1027-1039, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29302074

RESUMEN

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.


Asunto(s)
Genes Recesivos/genética , Discapacidad Intelectual/genética , Adulto , Consanguinidad , Exoma/genética , Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Mapas de Interacción de Proteínas/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA