Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 594(7863): 442-447, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079126

RESUMEN

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Asunto(s)
Neoplasias Colorrectales/patología , Intestino Delgado/patología , Células Madre Neoplásicas/patología , Oncogenes , Nicho de Células Madre , Animales , Células Clonales/patología , Neoplasias Colorrectales/genética , Femenino , Intestino Delgado/metabolismo , Masculino , Ratones , Mutación , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Nicho de Células Madre/genética , Microambiente Tumoral , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
2.
Development ; 145(10)2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29759978

RESUMEN

The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/embriología , Autorrenovación de las Células/fisiología , Glioma/patología , Meduloblastoma/patología , Células Madre Neoplásicas/citología , Células-Madre Neurales/citología , Encéfalo/citología , Encéfalo/patología , Neoplasias Encefálicas/genética , Diferenciación Celular/fisiología , Proliferación Celular , Transformación Celular Neoplásica/genética , Glioma/genética , Humanos , Meduloblastoma/genética , Transducción de Señal/fisiología
3.
Biochem Soc Trans ; 46(5): 1083-1091, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30242121

RESUMEN

Embryogenesis requires an exquisite regulation of cell proliferation, cell cycle withdrawal and differentiation into a massively diverse range of cells at the correct time and place. Stem cells also remain to varying extents in different adult tissues, acting in tissue homeostasis and repair. Therefore, regulated proliferation and subsequent differentiation of stem and progenitor cells remains pivotal throughout life. Recent advances have characterised the cell cycle dynamics, epigenetics, transcriptome and proteome accompanying the transition from proliferation to differentiation, revealing multiple bidirectional interactions between the cell cycle machinery and factors driving differentiation. Here, we focus on a direct mechanistic link involving phosphorylation of differentiation-associated transcription factors by cell cycle-associated Cyclin-dependent kinases. We discuss examples from the three embryonic germ layers to illustrate this regulatory mechanism that co-ordinates the balance between cell proliferation and differentiation.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular , Homeostasis , Animales , Linaje de la Célula , Proliferación Celular , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ectodermo/citología , Desarrollo Embrionario , Epigénesis Genética , Humanos , Mesodermo/metabolismo , Fosforilación , Proteoma/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Transcriptoma
4.
Cell Tissue Res ; 359(1): 187-200, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24859217

RESUMEN

Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Sistema Nervioso Central/citología , Animales , Proliferación Celular , Humanos , Células-Madre Neurales/citología , Neurogénesis
5.
Nat Commun ; 14(1): 8097, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062045

RESUMEN

Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.


Asunto(s)
Hormona Liberadora de Gonadotropina , Semaforinas , Humanos , Hormona Liberadora de Gonadotropina/metabolismo , Eminencia Media/metabolismo , Permeabilidad Capilar , Neuronas/metabolismo , Pubertad , Semaforinas/genética , Semaforinas/metabolismo
6.
Sci Rep ; 12(1): 2341, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149717

RESUMEN

The growth of glioblastoma (GBM), one of the deadliest adult cancers, is fuelled by a subpopulation of stem/progenitor cells, which are thought to be the source of resistance and relapse after treatment. Re-engagement of a latent capacity of these cells to re-enter a trajectory resulting in cell differentiation is a potential new therapeutic approach for this devastating disease. ASCL1, a proneural transcription factor, plays a key role in normal brain development and is also expressed in a subset of GBM cells, but fails to engage a full differentiation programme in this context. Here, we investigated the barriers to ASCL1-driven differentiation in GBM stem cells. We see that ASCL1 is highly phosphorylated in GBM stem cells where its expression is compatible with cell proliferation. However, overexpression of a form of ASCL1 that cannot be phosphorylated on Serine-Proline sites drives GBM cells down a neuronal lineage and out of cell cycle more efficiently than its wild-type counterpart, an effect further enhanced by deletion of the inhibitor of differentiation ID2, indicating mechanisms to reverse the block to GBM cell differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatología , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Proteína 2 Inhibidora de la Diferenciación/genética , Células Madre Neoplásicas/metabolismo , Secuencias de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Encefálicas/genética , Ciclo Celular , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Células Madre Neoplásicas/citología , Fosforilación
7.
Small GTPases ; 12(5-6): 336-357, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33054516

RESUMEN

Rnd proteins constitute a subfamily of Rho GTPases represented in mammals by Rnd1, Rnd2 and Rnd3. Despite their GTPase structure, their specific feature is the inability to hydrolyse GTP-bound nucleotide. This aspect makes them atypical among Rho GTPases. Rnds are regulated for their expression at the transcriptional or post-transcriptional levels and they are activated through post-translational modifications and interactions with other proteins. Rnd proteins are mainly involved in the regulation of the actin cytoskeleton and cell proliferation. Whereas Rnd3 is ubiquitously expressed, Rnd1 and 2 are tissue-specific. Increasing data has described their important role during development and diseases. Herein, we describe their involvement in physiological and pathological conditions with a focus on the neuronal and vascular systems, and summarize their implications in tumorigenesis.


Asunto(s)
Neoplasias/fisiopatología , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades Vasculares/fisiopatología , Proteínas de Unión al GTP rho/metabolismo , Humanos , Neoplasias/enzimología , Enfermedades del Sistema Nervioso/enzimología , Enfermedades Vasculares/enzimología
8.
Biol Open ; 10(2)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619017

RESUMEN

Emerging three-dimensional (3D) cultures of glioblastoma are becoming powerful models to study glioblastoma stem cell behavior and the impact of cell-cell and cell-microenvironment interactions on tumor growth and invasion. Here we describe a method for culturing human glioblastoma stem cells (GSCs) in 3D by co-culturing them with pluripotent stem cell-derived brain organoids. This requires multiple coordinated steps, including the generation of cerebral organoids, and the growth and fluorescence tagging of GSCs. We highlight how to recognize optimal organoid generation and how to efficiently mark GSCs, before describing optimized co-culture conditions. We show that GSCs can efficiently integrate into brain organoids and maintain a significant degree of cell fate heterogeneity, paving the way for the analysis of GSC fate behavior and lineage progression. These results establish the 3D culture system as a viable and versatile GBM model for investigating tumor cell biology and GSC heterogeneity.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Neoplasias Encefálicas/patología , Técnicas de Cocultivo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Organoides , Biomarcadores , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula/genética , Humanos
9.
Stem Cell Res Ther ; 12(1): 574, 2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34774094

RESUMEN

BACKGROUND: Stem cell-based therapies for neurodegenerative diseases like Parkinson's disease are a promising approach in regenerative medicine and are now moving towards early stage clinical trials. However, a number of challenges remain including the ability to grow stem cells in vitro on a 3-dimensional scaffold, as well as their loss, by leakage or cell death, post-implantation. These issues could, however, be helped through the use of scaffolds that support the growth and differentiation of stem cells both in vitro and in vivo. The present study focuses on the use of bacterial cellulose as an in vitro scaffold to promote the growth of different stem cell-derived cell types. Bacterial cellulose was used because of its remarkable properties such as its wettability, ability to retain water and low stiffness, all of which is similar to that found in brain tissue. METHODS: We cultured human embryonic stem cell-derived progenitor cells on bacterial cellulose with growth factors that were covalently functionalised to the surface via silanisation. Epifluorescence microscopy and immunofluorescence were used to detect the differentiation of stem cells into dopaminergic ventral midbrain progenitor cells. We then quantified the proportion of cells that differentiated into progenitor cells and compared the effect of growing cells on biofunctionalised cellulose versus standard cellulose. RESULTS: We show that the covalent functionalisation of bacterial cellulose sheets with bioactive peptides improves the growth and differentiation of human pluripotent stem cells into dopaminergic neuronal progenitors. CONCLUSIONS: This study suggests that the biocompatible material, bacterial cellulose, has potential applications in cell therapy approaches as a means to repair damage to the central nervous system, such as in Parkinson's disease but also in tissue engineering.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Diferenciación Celular , Celulosa , Neuronas Dopaminérgicas/fisiología , Humanos
10.
Front Cell Dev Biol ; 8: 220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373607

RESUMEN

Glioblastoma represents an aggressive form of brain cancer characterized by poor prognosis and a 5-year survival rate of only 3-7%. Despite remarkable advances in brain tumor research in the past decades, very little has changed for patients, due in part to the recurrent nature of the disease and to the lack of suitable models to perform genotype-phenotype association studies and personalized drug screening. In vitro culture of cancer cells derived from patient biopsies has been fundamental in understanding tumor biology and for testing the effect of various drugs. These cultures emphasize the role of in vitro cancer stem cells (CSCs), which fuel tumor growth and are thought to be the cause of relapse after treatment. However, it has become clear over the years that a 2D monolayer culture of these CSCs has certain disadvantages, including the lack of heterogeneous cell-cell and cell-environment interactions, which can now be partially overcome by the introduction of 3D organoid cultures. This is a novel and expanding field of research and in this review, I describe the emerging 3D models of glioblastoma. I also discuss their potential to advance our knowledge of tumor biology and CSC heterogeneity, while debating their current limitations.

11.
Front Cell Dev Biol ; 8: 549533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072742

RESUMEN

Mex3A is an RNA binding protein that can also act as an E3 ubiquitin ligase to control gene expression at the post-transcriptional level. In intestinal adult stem cells, MEX3A is required for cell self-renewal and when overexpressed, MEX3A can contribute to support the proliferation of different cancer cell types. In a completely different context, we found mex3A among the genes expressed in neurogenic niches of the embryonic and adult fish brain and, notably, its expression was downregulated during brain aging. The role of mex3A during embryonic and adult neurogenesis in tetrapods is still unknown. Here, we showed that mex3A is expressed in the proliferative region of the developing brain in both Xenopus and mouse embryos. Using gain and loss of gene function approaches, we showed that, in Xenopus embryos, mex3A is required for neuroblast proliferation and its depletion reduced the neuroblast pool, leading to microcephaly. The tissue-specific overexpression of mex3A in the developing neural plate enhanced the expression of sox2 and msi-1 keeping neuroblasts into a proliferative state. It is now clear that the stemness property of mex3A, already demonstrated in adult intestinal stem cells and cancer cells, is a key feature of mex3a also in developing brain, opening new lines of investigation to better understand its role during brain aging and brain cancer development.

12.
Nat Commun ; 11(1): 5037, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028844

RESUMEN

Pancreatic islets play an essential role in regulating blood glucose level. Although the molecular pathways underlying islet cell differentiation are beginning to be resolved, the cellular basis of islet morphogenesis and fate allocation remain unclear. By combining unbiased and targeted lineage tracing, we address the events leading to islet formation in the mouse. From the statistical analysis of clones induced at multiple embryonic timepoints, here we show that, during the secondary transition, islet formation involves the aggregation of multiple equipotent endocrine progenitors that transition from a phase of stochastic amplification by cell division into a phase of sublineage restriction and limited islet fission. Together, these results explain quantitatively the heterogeneous size distribution and degree of polyclonality of maturing islets, as well as dispersion of progenitors within and between islets. Further, our results show that, during the secondary transition, α- and ß-cells are generated in a contemporary manner. Together, these findings provide insight into the cellular basis of islet development.


Asunto(s)
Diferenciación Celular , Células Secretoras de Glucagón/fisiología , Células Secretoras de Insulina/fisiología , Páncreas/embriología , Animales , Linaje de la Célula/fisiología , Simulación por Computador , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Genes Reporteros/genética , Imagenología Tridimensional , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Modelos Animales , Modelos Biológicos , Organogénesis , Páncreas/diagnóstico por imagen , Células Madre/fisiología
14.
Sci Rep ; 8(1): 15374, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337647

RESUMEN

ß-cell replacement has been proposed as an effective treatment for some forms of diabetes, and in vitro methods for ß-cell generation are being extensively explored. A potential source of ß-cells comes from fate conversion of exocrine pancreatic cells into the endocrine lineage, by overexpression of three regulators of pancreatic endocrine formation and ß-cell identity, Ngn3, Pdx1 and MafA. Pancreatic ductal organoid cultures have recently been developed that can be expanded indefinitely, while maintaining the potential to differentiate into the endocrine lineage. Here, using mouse pancreatic ductal organoids, we see that co-expression of Ngn3, Pdx1 and MafA are required and sufficient to generate cells that express insulin and resemble ß-cells transcriptome-wide. Efficiency of ß-like cell generation can be significantly enhanced by preventing phosphorylation of Ngn3 protein and further augmented by conditions promoting differentiation. Taken together, our new findings underline the potential of ductal organoid cultures as a source material for generation of ß-like cells and demonstrate that post-translational regulation of reprogramming factors can be exploited to enhance ß-cell generation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Organoides/metabolismo , Conductos Pancreáticos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células HEK293 , Humanos , Células Secretoras de Insulina/citología , Ratones , Proteínas del Tejido Nervioso/genética , Organoides/citología , Conductos Pancreáticos/citología , Fosforilación
15.
Dev Cell ; 46(3): 360-375.e5, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30057275

RESUMEN

Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments.


Asunto(s)
Linaje de la Célula , Células Endocrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Organogénesis/fisiología , Páncreas/crecimiento & desarrollo , Células Acinares/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Morfogénesis/fisiología , Células Madre/metabolismo
16.
Cell Stem Cell ; 23(3): 436-443.e7, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100168

RESUMEN

The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mucosa Intestinal/metabolismo , Regeneración , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación
17.
Brain Sci ; 7(5)2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28448448

RESUMEN

Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration.

18.
Neuron ; 93(2): 348-361, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28041881

RESUMEN

Mutations in NIPBL are the most frequent cause of Cornelia de Lange syndrome (CdLS), a developmental disorder encompassing several neurological defects, including intellectual disability and seizures. How NIPBL mutations affect brain development is not understood. Here we identify Nipbl as a functional interaction partner of the neural transcription factor Zfp609 in brain development. Depletion of Zfp609 or Nipbl from cortical neural progenitors in vivo is detrimental to neuronal migration. Zfp609 and Nipbl overlap at genomic binding sites independently of cohesin and regulate genes that control cortical neuron migration. We find that Zfp609 and Nipbl interact with the Integrator complex, which functions in RNA polymerase 2 pause release. Indeed, Zfp609 and Nipbl co-localize at gene promoters containing paused RNA polymerase 2, and Integrator similarly regulates neuronal migration. Our data provide a rationale and mechanistic insights for the role of Nipbl in the neurological defects associated with CdLS.


Asunto(s)
Movimiento Celular/genética , Corteza Cerebral/crecimiento & desarrollo , Síndrome de Cornelia de Lange/genética , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Neuronas/citología , Transactivadores/genética , Factores de Transcripción/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
19.
Dev Cell ; 41(3): 274-286.e5, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28457793

RESUMEN

The proneural transcription factor Neurogenin3 (Ngn3) plays a critical role in pancreatic endocrine cell differentiation, although regulation of Ngn3 protein is largely unexplored. Here we demonstrate that Ngn3 protein undergoes cyclin-dependent kinase (Cdk)-mediated phosphorylation on multiple serine-proline sites. Replacing wild-type protein with a phosphomutant form of Ngn3 increases α cell generation, the earliest endocrine cell type to be formed in the developing pancreas. Moreover, un(der)phosphorylated Ngn3 maintains insulin expression in adult ß cells in the presence of elevated c-Myc and enhances endocrine specification during ductal reprogramming. Mechanistically, preventing multi-site phosphorylation enhances both Ngn3 stability and DNA binding, promoting the increased expression of target genes that drive differentiation. Therefore, multi-site phosphorylation of Ngn3 controls its ability to promote pancreatic endocrine differentiation and to maintain ß cell function in the presence of pro-proliferation cues and could be manipulated to promote and maintain endocrine differentiation in vitro and in vivo.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Proteínas del Tejido Nervioso/metabolismo , Animales , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Páncreas/metabolismo , Fosforilación , Transducción de Señal/fisiología
20.
Cell Chem Biol ; 24(8): 1017-1028.e7, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28807782

RESUMEN

Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression. Poloppin kills cells expressing mutant KRAS, selectively enhancing death in mitosis. PLK1 or PLK4 depletion recapitulates these cellular effects, as does PBD overexpression, corroborating Poloppin's mechanism of action. An optimized analog with favorable pharmacokinetics, Poloppin-II, is effective against KRAS-expressing cancer xenografts. Poloppin resistance develops less readily than to an ATP-competitive PLK1 inhibitor; moreover, cross-sensitivity persists. Poloppin sensitizes mutant KRAS-expressing cells to clinical inhibitors of c-MET, opening opportunities for combination therapy. Our findings exemplify the utility of small molecules modulating the protein-protein interactions of PLKs to therapeutically target mutant KRAS-expressing cancers.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Mitosis , Estructura Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA