Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 17(7): 896-902, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29855026

RESUMEN

The triplet excited state of a new Ir-based photosensitizer with two chromenopyridinone and one bipyridine-based ligands has been studied by pump-probe X-ray absorption near edge structure (XANES) spectroscopy coupled with DFT calculations. The excited state has a lifetime of 0.5 µs in acetonitrile and is characterized by very small changes of the local atomic structure with an average metal-ligand bond length change of less than 0.01 Å. DFT-based calculations allow the interpretation of the XANES in the energy range of ∼50 eV around the absorption edge. The observed transient XANES signal arises from an additional metal-centered Ir 5d vacancy in the excited state which appears as a result of electron transfer from the metal to the ligand. The overall energy shift of the excited state spectrum originates from the shift of 2p and unoccupied states induced by screening effects. The approach for the analysis of time-resolved spectra of 5d metal complexes is quite general and can also be used if excited and ground state structures are significantly different.

2.
Phys Chem Chem Phys ; 20(34): 22331-22341, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30124697

RESUMEN

The photophysics of 9(19),16(17),23(24)-tri-tert-butyl-2-[ethynyl-(4-carboxymethyl)phenyl]phthalocyaninatozinc(ii) and its H-aggregates is studied in different solvents by means of ultrafast non-linear optical spectroscopy and computational modeling. In non-coordinating solvents, both stationary and time-resolved spectroscopies highlight the formation of extended molecular aggregates, whose dimension and spectral properties depends on the concentration. In all the explored experimental conditions, time-resolved transient absorption experiments show multi exponential decay of the signals. Additional insights into the excited state relaxation mechanisms of the system is obtained with 2D electronic spectroscopy, which is employed to compare the deactivation channels in the absence or presence of aggregates. In ethanol and diethylether, where only monomers are present, an ultrafast relaxation process among the two non-degenerate Q-states of the molecule is evidenced by the appearance of a cross peak in the 2D-maps. In chloroform or CCl4, where disordered H-aggregates are formed, an energy transfer channel among aggregates with different composition and size is observed, leading to the non-radiative decay towards the lower energy dark state of the aggregates. Efficient coupling between less and more aggregated species is highlighted in two-dimensional electronic spectra by the appearance of a cross peak. The kinetics and intensity of the latter depend on the concentration of the solution. Finally, the linear spectroscopic properties of the aggregate are reproduced using a simplified structural model of an extended aggregate, based on Frenkel Hamiltonian Calculations and on an estimate of the electronic couplings between each dimer composing the aggregate computed at DFT level.

3.
J Am Chem Soc ; 139(40): 14198-14208, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28953394

RESUMEN

The future of artificial photosynthesis depends on economic and robust water oxidation catalysts (WOCs). Cobalt-based WOCs are especially promising for knowledge transfer between homogeneous and heterogeneous catalyst design. We introduce the active and stable {CoII4O4} cubane [CoII4(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2 (Co4O4-dpk) as the first molecular WOC with the characteristic {H2O-Co2(OR)2-OH2} edge-site motif representing the sine qua non moiety of the most efficient heterogeneous Co-oxide WOCs. DFT-MD modelings as well as in situ EXAFS measurements indicate the stability of the cubane cage in solution. The stability of Co4O4-dpk under photocatalytic conditions ([Ru(bpy)3]2+/S2O82-) was underscored with a wide range of further analytical methods and recycling tests. FT-IR monitoring and HR-ESI-MS spectra point to a stable coordination of the acetate ligands, and DFT-MD simulations along with 1H/2H exchange experiments highlight a favorable intramolecular base functionality of the dpy{OH}O ligands. All three ligand types enhance proton mobility at the edge site through a unique bioinspired environment with multiple hydrogen-bonding interactions. In situ XANES experiments under photocatalytic conditions show that the {CoII4O4} core undergoes oxidation to Co(III) or higher valent states, which recover rather slowly to Co(II). Complementary ex situ chemical oxidation experiments with [Ru(bpy)3]3+ furthermore indicate that the oxidation of all Co(II) centers of Co4O4-dpk to Co(III) is not a mandatory prerequisite for oxygen evolution. Moreover, we present the [CoIIxNi4-x(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2 (CoxNi4-xO4-dpk) series as the first mixed Co/Ni-cubane WOCs. They newly bridge homogeneous and heterogeneous catalyst design through fine-tuned edge-site environments of the Co centers.

4.
Phys Chem Chem Phys ; 17(33): 21594-604, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26220307

RESUMEN

We have analyzed the excited state dynamics of the heteroleptic [(NCS)2Ru(bpy-(COOH)2)(bpy-(C6H13)2)] Z907 solar cell sensitizer in solution and when adsorbed onto thin TiO2 films, by combining transient visible and infrared (IR) spectroscopies with ab initio Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) calculations. Upon excitation with ultra-short pulses in ethanol and dimethyl-sulphoxide solutions, the visible spectra show the appearance of a positive signal around 650 nm, within the instrumental time resolution (<100 fs), which in ethanol undergoes a red-shift in about 20 ps. Measurements in the IR indicate that, upon excitation, both the CN and CO marker bands, associated with the NCS and COOH groups, downshift in frequency, in response to intramolecular ligand + metal (Ru-NCS) to ligand' (bpy-COOH2) charge transfer (LML'CT). Vibrational cooling is observed in both solvents; in ethanol it is overtaken by the hydrogen bond dynamics. On the basis of DFT/TDDFT calculations, explicitly modeling the interaction of the NCS and COOH groups with solvent (ethanol) molecules, we rationalize the observed IR and visible spectral evolution as arising from the change in the hydrogen-bond network, which accompanies the transition to the lowest-energy triplet state. This interpretation provides a consistent explanation of what is also observed in the transient visible spectra. Transient IR measurements repeated for molecules adsorbed on TiO2 and ZrO2 films, allow us to identify the structural changes signaling the dye triplet excited state formation and evidence multiexponential electron injection rates into the semiconductor TiO2 film.

5.
Nat Commun ; 11(1): 2131, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358505

RESUMEN

OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu-C and Cu-P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu-Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores.

6.
ChemSusChem ; 11(18): 3087-3091, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30009517

RESUMEN

Cobalt polypyridyls are highly efficient water-stable molecular catalysts for hydrogen evolution. The catalytic mechanism explaining their activity is under debate and the main question is the nature of the involvement of pyridyls in the proton transfer: the pentapyridyl ligand, acting as a pentadentate ligand, can provide stability to the catalyst or one of the pyridines can be involved in the proton transfer. Time-resolved Co K-edge X-ray absorption spectroscopy in the microsecond time range indicates that, for the [CoII (aPPy)] catalyst (aPPy=di([2,2'-bipyridin]-6-yl)(pyridin-2-yl)methanol), the pendant pyridine dissociates from the cobalt in the intermediate CoI state. This opens the possibility for pyridinium to act as an intramolecular proton donor. In the resting state, the catalyst returns to the original six-coordinate high-spin CoII state with a pentapyridyl and one water molecule coordinating to the metal center. Such a bifunctional role of the polypyridyl ligands can be exploited during further optimization of the catalyst.

7.
J Phys Chem B ; 117(49): 15492-502, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23888870

RESUMEN

In this work, we studied the valence tautomerism process on two different Co-dioxolene complexes by means of transient infrared spectroscopy (TRIR). The molecules investigated are ls-Co(III)(Cat-N-BQ)(Cat-N-SQ) (DQ2) and [ls-Co(III)(tpy)(Cat-N-SQ)]PF6 (tpy), where Cat-NBQ = 2-(2-hydroxy-3,5-ditert-butylphenyl-imino)-4,6-ditert-butylcyclohexa-3,5-dienone, Cat-N-SQ is the dianionic radical analogue, and tpy = 2,2'-6-2″-terpyridine. DFT calculations of the harmonic frequencies for the two complexes allow us to pinpoint the normal modes to be used as markers of the semiquinonate and benzoquinonate isomers. The photoinduced one-electron charge transfer process from the radical semiquinonate ligand to the metal center leads to a ls-Co(II)(x)(Cat-N-BQ) electronic state (where x is the other ligand). Following this first step, an ultrafast ISC process (τ < 200 fs) takes places, yielding the benzoquinonate isomer (hs-Co(II)(x)(Cat-N-BQ)). In the experiments, we employed different excitation wavelengths on resonance with different absorption bands of the two samples. Excitation in the ligand-to-metal charge transfer (LMCT) band at ∼520 nm and in the semiquinonate band at ∼1000 nm induces the valence tautomerism (VT) in both samples. From the time evolution of the TRIR spectra, we determine the time constants of the vibrational cooling in the tautomeric state (7-14 ps) and the ground state recovery times (∼350 ps for tpy and ∼450 ps for DQ2). In contrast, when the pump frequency is set at 712 nm, on resonance with the benzoquinonate absorption band of the second active ligand of the DQ2, no electron transfer takes place: the TRIR spectra basically show only ground state bleaching bands and no marker band of the tautomeric conversion shows up.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA