Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Haematol ; 107(4): 393-407, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34107104

RESUMEN

OBJECTIVES: Total body irradiation (TBI) is commonly used prior to hematopoietic stem cell transplantation (HSCT) in myeloablative conditioning regimens. However, TBI may be replaced by total marrow irradiation (TMI) at centres with access to Helical TomoTherapy, a modality that has the advantage of delivering intensity-modulated radiotherapy to long targets such as the entire bone marrow compartment. Toxicity after organ sparing TMI prior to HSCT has not previously been reported compared to TBI or with regard to engraftment data. METHODS: We conducted a prospective observational study on 37 patients that received organ sparing TMI prior to HSCT and compared this cohort to retrospective data on 33 patients that received TBI prior to HSCT. RESULTS: The 1-year graft-versus-host disease-free, relapse-free survival (GRFS) was 67.5% for all patients treated with TMI and 80.5% for patients with matched unrelated donor and treated with TMI, which was a significant difference from historical data on TBI patients with a hazard ratio of 0.45 (P = .03) and 0.24 (P < .01). Engraftment with a platelet count over 20 [K/µL] and 50 [K/µL] was significantly shorter for the TMI group, and neutrophil recovery was satisfactory in both treatment cohorts. There was generally a low occurrence of other treatment-related toxicities. CONCLUSIONS: Despite small cohorts, some significant differences were found; TMI as part of the myeloablative conditioning yields a high 1-year GRFS, fast and robust engraftment, and low occurrence of acute toxicity.


Asunto(s)
Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas/métodos , Síndromes Mielodisplásicos/terapia , Trastornos Mieloproliferativos/terapia , Radioterapia de Intensidad Modulada/métodos , Irradiación Corporal Total/métodos , Adolescente , Adulto , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Niño , Preescolar , Femenino , Supervivencia de Injerto/fisiología , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/inmunología , Humanos , Masculino , Persona de Mediana Edad , Agonistas Mieloablativos/uso terapéutico , Síndromes Mielodisplásicos/mortalidad , Síndromes Mielodisplásicos/patología , Trastornos Mieloproliferativos/mortalidad , Trastornos Mieloproliferativos/patología , Estudios Prospectivos , Radioterapia de Intensidad Modulada/mortalidad , Análisis de Supervivencia , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo , Irradiación Corporal Total/mortalidad
2.
J Appl Clin Med Phys ; 21(8): 139-148, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32592288

RESUMEN

PURPOSE: In this study, we have quantified the setup deviation and time gain when using fast surface scanning for daily setup/positioning with weekly megavoltage computed tomography (MVCT) and compared it to daily MVCT. METHODS: A total of 16 835 treatment fractions were analyzed, treated, and positioned using our TomoTherapy HD (Accuray Inc., Madison, USA) installed with a Sentinel optical surface scanning system (C-RAD Positioning AB, Uppsala, Sweden). Patients were positioned using in-room lasers, surface scanning and MVCT for the first three fractions. For the remaining fractions, in-room laser was used for setup followed by daily surface scanning with MVCT once weekly. The three-dimensional (3D) setup correction for surface scanning was evaluated from the registration between MVCT and the planning CT. The setup correction vector for the in-room lasers was assessed from the surface scanning and the MVCT to planning CT registration. The imaging time was evaluated as the time from imaging start to beam-on. RESULTS: We analyzed 894 TomoTherapy treatment plans from 2012 to 2018. Of all the treatment fractions performed with surface scanning, 90 % of the residual errors were within 2.3 mm for CNS (N = 284), 2.9 mm for H&N (N = 254), 8.7 mm for thorax (N = 144) and 10.9 for abdomen (N = 134) patients. The difference in residual error between surface scanning and positioning with in-room lasers was significant (P < 0.005) for all sites. The imaging time was assessed as total imaging time per treatment plan, modality, and treatment site and found that surface scanning significantly reduced patient on-couch time compared to MVCT for all treatment sites (P < 0.005). CONCLUSIONS: The results indicate that daily surface scanning with weekly MVCT can be used with the current target margins for H&N, CNS, and thorax, with reduced imaging time.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Estudios Retrospectivos , Suecia
3.
J Appl Clin Med Phys ; 20(5): 44-54, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31033159

RESUMEN

Mycosis fungoides is a disease with manifestation of the skin that has traditionally been treated with electron therapy. In this paper, we present a method of treating the entire skin with megavoltage photons using helical tomotherapy (HT), verified through a phantom study and clinical dosimetric data from our first two treated patients. A whole body phantom was fitted with a wetsuit as bolus, and scanned with computer tomography. We accounted for variations in daily setup using virtual bolus in the treatment plan optimization. Positioning robustness was tested by moving the phantom, and recalculating the dose at different positions. Patient treatments were verified with in vivo film dosimetry and dose reconstruction from daily imaging. Reconstruction of the actual delivered dose to the patients showed similar target dose as the robustness test of the phantom shifted 10 mm in all directions, indicating an appropriate approximation of the anticipated setup variation. In vivo film measurements agreed well with the calculated dose confirming the choice of both virtual and physical bolus parameters. Despite the complexity of the treatment, HT was shown to be a robust and feasible technique for total skin irradiation. We believe that this technique can provide a viable option for Tomotherapy centers without electron beam capability.


Asunto(s)
Micosis Fungoide/radioterapia , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias Cutáneas/radioterapia , Adulto , Anciano , Estudios de Factibilidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Pronóstico , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X/métodos
4.
J Appl Clin Med Phys ; 20(9): 61-68, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31478615

RESUMEN

PURPOSE: The purpose of the study was to investigate if surface guided radiotherapy (SGRT) can decrease setup deviations for tangential and locoregional breast cancer patients compared to conventional laser-based setup (LBS). MATERIALS AND METHODS: Both tangential (63 patients) and locoregional (76 patients) breast cancer patients were enrolled in this study. For LBS, the patients were positioned by aligning skin markers to the room lasers. For the surface based setup (SBS), an optical surface scanning system was used for daily setup using both single and three camera systems. To compare the two setup methods, the patient position was evaluated using verification imaging (field images or orthogonal images). RESULTS: For both tangential and locoregional treatments, SBS decreased the setup deviation significantly compared to LBS (P < 0.01). For patients receiving tangential treatment, 95% of the treatment sessions were within the clinical tolerance of ≤ 4 mm in any direction (lateral, longitudinal or vertical) using SBS, compared to 84% for LBS. Corresponding values for patients receiving locoregional treatment were 70% and 54% for SBS and LBS, respectively. No significant difference was observed comparing the setup result using a single camera system or a three camera system. CONCLUSIONS: Conventional laser-based setup can with advantage be replaced by surface based setup. Daily SGRT improves patient setup without additional imaging dose to breast cancer patients regardless if a single or three camera system was used.


Asunto(s)
Braquiterapia/normas , Neoplasias de la Mama/radioterapia , Posicionamiento del Paciente , Planificación de la Radioterapia Asistida por Computador/normas , Errores de Configuración en Radioterapia/prevención & control , Radioterapia Guiada por Imagen/normas , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Pronóstico , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
5.
Acta Oncol ; 54(2): 261-5, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25383452

RESUMEN

BACKGROUND: For breathing adapted radiotherapy, the same motion monitoring system can be used for imaging and triggering of the accelerator. PURPOSE: To evaluate a new technique for prospective gated computed tomography (CT) and four-dimensional CT (4DCT) using a laser based surface scanning system (Sentinel(™), C-RAD, Uppsala, Sweden). The system was compared to the AZ-733V respiratory gating system (Anzai Medical, Tokyo, Japan) and the Real-Time Position Management System (RPM(™)) (Varian Medical Systems, Palo Alto, CA, USA). MATERIAL AND METHODS: Temporal accuracy was evaluated using a moving phantom programmed to move a platform along trajectories following a sin(6)(ωt) function with amplitudes from 6 to 20 mm and periods from 2 to 5 s during 120 s while the motion was recorded. The recorded data was Fourier transformed and the peak area at the fundamental and harmonic frequencies compared to data generated using the same sinusoidal function. For verification of the 4DCT reconstruction process, the phantom was programmed to move along a sinusoidal trajectory. Ten phase series were reconstructed. The distance from the couch to the platform was measured in each image. By fitting the function sin(ωt-ϕ) to the values measured in the images corresponding to each slice, the phase of each image was verified. RESULTS AND CONCLUSION: In the recorded data, the peak area at the fundamental frequency covered on average 104 ± 4%, 102 ± 4% and 91 ± 27% of the peak area in the generated data for the Sentinel(™), RPM(™) and AZ-733V systems, respectively. All systems managed to resolve both harmonic frequencies. The second experiment showed that all images were sorted into the correct series using breathing data recorded by each system. The systems generated very similar results, however, it is preferable to use the same system both for imaging and treatment.


Asunto(s)
Rayos Láser , Movimiento , Fantasmas de Imagen , Respiración , Técnicas de Imagen Sincronizada Respiratorias/métodos , Tomografía Computarizada por Rayos X/métodos , Diseño de Equipo , Tomografía Computarizada Cuatridimensional/métodos , Análisis de Fourier , Humanos , Imagen Óptica , Posicionamiento del Paciente , Técnicas de Imagen Sincronizada Respiratorias/instrumentación , Tórax
6.
Front Oncol ; 14: 1342488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304871

RESUMEN

Introduction: We have previously adapted a clinical linear accelerator (Elekta Precise, Elekta AB) for ultra-high dose rate (UHDR) electron delivery. To enhance reliability in future clinical FLASH radiotherapy trials, the aim of this study was to introduce and evaluate an upgraded beam control system and beam tuning process for safe and precise UHDR delivery. Materials and Methods: The beam control system is designed to interrupt the beam based on 1) a preset number of monitor units (MUs) measured by a monitor detector, 2) a preset number of pulses measured by a pulse-counting diode, or 3) a preset delivery time. For UHDR delivery, an optocoupler facilitates external control of the accelerator's thyratron trigger pulses. A beam tuning process was established to maximize the output. We assessed the stability of the delivery, and the independent interruption capabilities of the three systems (monitor detector, pulse counter, and timer). Additionally, we explored a novel approach to enhance dosimetric precision in the delivery by synchronizing the trigger pulse with the charging cycle of the pulse forming network (PFN). Results: Improved beam tuning of gun current and magnetron frequency resulted in average dose rates at the dose maximum at isocenter distance of >160 Gy/s or >200 Gy/s, with or without an external monitor chamber in the beam path, respectively. The delivery showed a good repeatability (standard deviation (SD) in total film dose of 2.2%) and reproducibility (SD in film dose of 2.6%). The estimated variation in DPP resulted in an SD of 1.7%. The output in the initial pulse depended on the PFN delay time. Over the course of 50 measurements employing PFN synchronization, the absolute percentage error between the delivered number of MUs calculated by the monitor detector and the preset MUs was 0.8 ± 0.6% (mean ± SD). Conclusion: We present an upgraded beam control system and beam tuning process for safe and stable UHDR electron delivery of hundreds of Gy/s at isocenter distance at a clinical linac. The system can interrupt the beam based on monitor units and utilize PFN synchronization for improved dosimetric precision in the dose delivery, representing an important advancement toward reliable clinical FLASH trials.

7.
Radiat Res ; 201(3): 252-260, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38308528

RESUMEN

This study aims to investigate the feasibility of enhancing the charge collection efficiency (CCE) of a transmission chamber by reconfiguring its design and operation. The goal was to extend the range of dose-per-pulse (DPP) values with no or minimal recombination effects up to the ultra-high dose rate (UHDR) regime. The response of two transmission chambers, with electrode distance of 1 mm and 0.6 mm, respectively, was investigated as a function of applied voltage. The chambers were mounted one-by-one in the electron applicator of a 10 MeV FLASH-modified clinical linear accelerator. The chamber signals were measured as a function of nominal DPP, which was determined at the depth of dose maximum using EBT-XD film in solid water and ranged from 0.6 mGy per pulse to 0.9 Gy per pulse, for both the standard voltage of 320 V and the highest possible safe voltage of 1,200 V. The CCE was calculated and fitted with an empirical logistic function that incorporated the electrode distance and the chamber voltage. The CCE decreased with increased DPP. The CCE at the highest achievable DPP was 24% (36%) at 320 V and 51% (82%) at 1,200 V, for chambers with 1 mm (0.6 mm) electrode distance. For the combination of 1,200 V- and 0.6-mm electrode distance, the CCE was ∼100% for average dose rate up to 70 Gy/s at the depth of dose maximum in the phantom at a source-to-surface distance of 100 cm. Our findings indicate that minor modifications to a plane-parallel transmission chamber can substantially enhance the CCE and extending the chamber's operating range to the UHDR regime. This supports the potential of using transmission chamber-based monitoring solutions for UHDR beams, which could facilitate the delivery of UHDR treatments using an approach similar to conventional clinical delivery.


Asunto(s)
Aceleradores de Partículas , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Fantasmas de Imagen
8.
Clin Transl Radiat Oncol ; 38: 183-187, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36479236

RESUMEN

Background and Purpose: The aim of this study was to analyze a magnetic resonance imaging (MRI)-only radiotherapy workflow from an economic perspective in terms of reduced time, costs and systematic uncertainties. Material/Methods: A documented Swedish clinical implementation of MRI-only radiotherapy was used as template for cost assessments compared to a combined computed tomography (CT)/MRI workflow. The costs were taken from official regional price lists from 2021. MRI-only specific quality assurance (QA) was assumed necessary in an initial phase. Treatment plans for target volumes with margins of 5-10 mm were created for ten prostate cancer patients prescribed 78 Gy in 39 fractions. The risk of Grade ≥ 2 rectal toxicity or rectal bleeding was calculated using the QUANTEC recommended NTCP model and costs estimated based on subsequent diagnostic examinations. Results: The exclusion of the CT-examination and faster target delineation were the main contributors to cost reductions. Additional QA procedures limited the initial cost reduction to 14 EUR/patient. Long-term MRI-only reduced the costs by 209 EUR/patient. Reducing margins resulted in Grade ≥ 2 rectal toxicity or rectal bleeding probability of 9.7 % for 7 mm margin and 6.0 % for 5 mm margin. This margin reduction resulted in an additional cost reduction of 46 EUR/patient. Conclusion: An MRI-only workflow implementation is associated with reduced costs when the workflow tasks are more time efficient and side effects are reduced as a result of margin reduction. The short-term economic benefits are limited due to extra costs of QA procedures. The economic benefits of MRI-only will make impact first when the workflow is well established, and margin reduction has been included.

9.
Med Phys ; 50(10): 6569-6579, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696040

RESUMEN

PURPOSE: The increased normal tissue tolerance for FLASH radiotherapy (FLASH-RT), as compared to conventional radiotherapy, was first observed in ultra-high dose rate electron beams. Initial clinical trials in companion animals have revealed a high risk of developing osteoradionecrosis following high-dose single-fraction electron FLASH-RT, which may be related to inhomogeneities in the dose distribution. In the current study, we aim to evaluate the possibilities of intensity-modulated electron FLASH-RT in a clinical setting to ensure a homogeneous dose distribution in future veterinary and human clinical trials. METHODS: Our beam model in the treatment planning system electronRT (.decimal, LLC, Sanford, FL, USA) was based on a 10-MeV electron beam from a clinical linear accelerator used to treat veterinary patients with FLASH-RT in a clinical setting. In electronRT, the beam can be intensity-modulated using tungsten island blocks in the electron block cutout, and range-modulated using a customized bolus with variable thickness. Modulations were first validated in a heterogeneous phantom by comparing measured and calculated dose distributions. To evaluate the impact of intensity modulation in superficial single-fraction FLASH-RT, a treatment planning study was conducted, including eight canine cancer patient cases with simulated tumors in the head-and-neck region. For each case, treatment plans with and without intensity modulation were created for a uniform bolus and a range-modulating bolus. Treatment plans were evaluated using a target dose homogeneity index (HI), a conformity index (CI), the near-maximum dose outside the target ( D 2 % , Body - PTV ${D_{2{\mathrm{\% }},{\mathrm{\ Body}} - {\mathrm{PTV}}}}$ ), and the near-minimum dose to the target ( D 98 % ${D_{98\% }}$ ). RESULTS: By adding intensity modulation to plans with a uniform bolus, the HI could be improved (p = 0.017). The combination of a range-modulating bolus and intensity modulation provided a further significant improvement of the HI as compared to using intensity modulation in combination with a uniform bolus (p = 0.036). The range-modulating bolus also improved the CI compared to using a uniform bolus, both with an open beam (p = 0.046) and with intensity modulation (p = 0.018), as well as increased the D 98 % ${D_{98\% }}$ (p = 0.036 with open beam and p = 0.05 with intensity modulation) and reduced the median D 2 % , Body - PTV ${D_{2\% ,{\mathrm{\ Body}} - {\mathrm{PTV}}}}$ (not significant). CONCLUSIONS: By using intensity-modulated electron FLASH-RT in combination with range-modulating bolus, the target dose homogeneity and conformity in canine patients with simulated tumors in complex areas in the head-and-neck region could be improved. By utilizing this technique, we hope to decrease the dose outside the target volume and avoid hot spots in future clinical electron FLASH-RT studies, thereby reducing the risk of radiation-induced toxicity.


Asunto(s)
Neoplasias , Traumatismos por Radiación , Radioterapia de Intensidad Modulada , Humanos , Animales , Perros , Electrones , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos
10.
Front Oncol ; 13: 1256760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766866

RESUMEN

Background: FLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT. Methods: Privately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT. Results: Eleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses. Conclusion: This study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients.

11.
J Surg Res ; 167(2): e137-43, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21324398

RESUMEN

BACKGROUND: Matrilysin (MMP-7) elevation after radiotherapy is shown in humans. Matrilysin regulates certain cytokines and the production of bactericidal proteins when the mucosa is exposed to bacterial antigens. We investigate the effect of irradiation on matrilysin and microflora in murine bowel, after modulation with antibiotics. METHODS: Animals were divided into two different groups a radiation group (72 animals) and sham radiation group (36 animals). Animals were divided into smaller groups of six according to radiation dose (19 or 38 Gy or sham). Seven days before radiotherapy ampicillin 500 mg/kg/d was administered intramuscularly, in the antibiotic groups. An exteriorized segment of ileum was subjected to single high dose radiation (19 or 38 Gy). Samples were collected 2, 24, and 48 h and analyzed for microflora, MIP-2, TGF-ß, and MMP-7. RESULTS: The combination of antibiotics and irradiation leads to an early significant reduction of bacteria, down-regulates MIP-2, up-regulates TGF-ß and elevation of MMP-7 to levels achieved by antibiotics or irradiation alone. Lactobacilli were reduced to non-existent levels after antibiotics. CONCLUSIONS: Pretreatment with Ampicillin before irradiation and laparotomy in a murine model leads to Matrilysin over-expression as achieved by radiotherapy alone. Microfloral regulation does not affect MMP-7 stimulation after surgical or radiological trauma. Radiotherapy overrides the effect of antibiotics leading to an up-regulation of MMP-7, TGF-ß and MIP-2 expression between 24 h and 48 h.


Asunto(s)
Íleon/microbiología , Íleon/efectos de la radiación , Lactobacillus/aislamiento & purificación , Metaloproteinasa 7 de la Matriz/metabolismo , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Quimiocina CXCL2/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Íleon/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Factor de Crecimiento Transformador beta/metabolismo
12.
Phys Imaging Radiat Oncol ; 18: 5-10, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34258401

RESUMEN

BACKGROUND: Treatment adaptation based on tumour biomarker response during radiotherapy of prostate cancer, could be used for both escalation and de-escalation of radiation doses and volumes. To execute an adaptation involving extension of treatment volumes during radiation can however be restricted by the doses already delivered. The aim of this work was to develop a treatment planning method that addresses this challenge. MATERIAL AND METHODS: A volumetric-modulated-arc-therapy (VMAT) planning method with sequential plan-on-plan optimization was developed for a prospective phase II trial including 100 patients on salvage radiotherapy (SRT) for prostate cancer recurrence. A treatment adaptation was performed after five weeks of SRT based on prostate-specific antigen response during this phase of the treatment. This involved extension of treatment volumes for non-responders (n = 64) to include pelvic lymph nodes and boost to 68Gallium-Prostate-Specific-Membrane-Antigen-Positron-Emission-Tomography positive lesions. This method was evolved by introducing an EQD2 (equivalent dose in 2.0 Gy fractions) correction of the base plan for improved dose coverage. RESULTS: All dose-volume criteria for target coverage were met for the non-responders when based on physical dose. An EQD2 correction of the base plan for non-responders, implemented for the final 29 patients, led to a statistically significant improvement in dose coverage as compared to the 35 patients treated without EQD2 correction. CONCLUSIONS: This is to our knowledge the only study presented on biomarker-guided sequential VMAT radiotherapy using a plan-on-plan technique in the pelvis. By using a biologically adapted technique an improved target coverage was achieved without compromising doses to organs at risk.

13.
Phys Imaging Radiat Oncol ; 19: 112-119, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34401537

RESUMEN

BACKGROUND AND PURPOSE: Radiation therapy treatment planning is a manual, time-consuming task that might be accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep learning model can predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer patients. MATERIALS AND METHODS: A modified U-Net was trained on triplets, a combination of three consecutive image slices and corresponding segmentations, from 160 patients, and compared to a baseline U-Net. Dose predictions from 17 test patients were transformed into deliverable treatment plans using a novel planning workflow. RESULTS: The model achieved a mean absolute dose error of 1.3%, 1.9%, 1.0% and ≤ 2.6% for clinical target volume (CTV) CTV_D100%, planning target volume (PTV) PTV_D98%, PTV_D95% and organs at risk (OAR) respectively, when compared to the clinical ground truth (GT) dose distributions. All predicted distributions were successfully transformed into deliverable treatment plans and tested on a phantom, resulting in a passing rate of 100% (global gamma, 3%, 2 mm, 15% cutoff). The dose difference between deliverable treatment plans and GT dose distributions was within 4.4%. The difference between the baseline model and our improved model was statistically significant (p < 0.05) for CVT_D100%, PTV_D98% and PTV_D95%. CONCLUSION: Triplet-based training improved VMAT dose distribution predictions when compared to 2D. Dose predictions were successfully transformed into deliverable treatment plans using our proposed treatment planning procedure. Our method may automate parts of the workflow for external beam prostate radiation therapy and improve the overall treatment speed and plan quality.

14.
Artículo en Inglés | MEDLINE | ID: mdl-34527818

RESUMEN

INTRODUCTION: The aim of this study was to evaluate if surface guided radiotherapy (SGRT) can decrease patient positioning time for localized prostate cancer patients compared to the conventional 3-point localization setup method. The patient setup accuracy was also compared between the two setup methods. MATERIALS AND METHODS: A total of 40 localized prostate cancer patients were enrolled in this study, where 20 patients were positioned with surface imaging (SI) and 20 patients were positioned with 3-point localization. The setup time was obtained from the system log files of the linear accelerator and compared between the two methods. The patient setup was verified with daily orthogonal kV images which were matched based on the implanted gold fiducial markers. Resulting setup deviations between planned and online positions were compared between SI and 3-point localization. RESULTS: Median setup time was 2:50 min and 3:28 min for SI and 3-point localization, respectively (p < 0.001). The median vector offset was 4.7 mm (range: 0-10.4 mm) for SI and 5.2 mm for 3-point localization (range: 0.41-17.3 mm) (p = 0.01). Median setup deviation in the individual translations for SI and 3-point localization respectively was: 1.1 mm and 1.9 mm in lateral direction (p = 0.02), 1.8 and 1.6 mm in the longitudinal direction (p = 0.41) and 2.2 mm and 2.6 mm in the vertical direction (p = 0.04). CONCLUSIONS: Using SGRT for positioning of prostate cancer patients provided a faster and more accurate patient positioning compared to the conventional 3-point localization setup.

15.
Front Oncol ; 11: 658004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055624

RESUMEN

FLASH radiotherapy has emerged as a treatment technique with great potential to increase the differential effect between normal tissue toxicity and tumor response compared to conventional radiotherapy. To evaluate the feasibility of FLASH radiotherapy in a relevant clinical setting, we have commenced a feasibility and safety study of FLASH radiotherapy in canine cancer patients with spontaneous superficial solid tumors or microscopic residual disease, using the electron beam of our modified clinical linear accelerator. The setup for FLASH radiotherapy was established using a short electron applicator with a nominal source-to-surface distance of 70 cm and custom-made Cerrobend blocks for collimation. The beam was characterized by measuring dose profiles and depth dose curves for various field sizes. Ten canine cancer patients were included in this initial study; seven patients with nine solid superficial tumors and three patients with microscopic disease. The administered dose ranged from 15 to 35 Gy. To ensure correct delivery of the prescribed dose, film measurements were performed prior to and during treatment, and a Farmer-type ion-chamber was used for monitoring. Treatments were found to be feasible, with partial response, complete response or stable disease recorded in 11/13 irradiated tumors. Adverse events observed at follow-up ranging from 3-6 months were mild and consisted of local alopecia, leukotricia, dry desquamation, mild erythema or swelling. One patient receiving a 35 Gy dose to the nasal planum, had a grade 3 skin adverse event. Dosimetric procedures, safety and an efficient clincal workflow for FLASH radiotherapy was established. The experience from this initial study will be used as a basis for a veterinary phase I/II clinical trial with more specific patient inclusion selection, and subsequently for human trials.

16.
Radiat Res ; 194(6): 580-586, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33348371

RESUMEN

In the novel and promising radiotherapy technique known as FLASH, ultra-high dose-rate electron beams are used. As a step towards clinical trials, dosimetric advances will be required for accurate dose delivery of FLASH. The purpose of this study was to determine whether a built-in transmission chamber of a clinical linear accelerator can be used as a real-time dosimeter to monitor the delivery of ultra-high-dose-rate electron beams. This was done by modeling the drop-in ion-collection efficiency of the chamber with increasing dose-per-pulse values, so that the ion recombination effect could be considered. The raw transmission chamber signal was extracted from the linear accelerator and its response was measured using radiochromic film at different dose rates/dose-per-pulse values, at a source-to-surface distance of 100 cm. An increase of the polarizing voltage, applied over the transmission chamber, by a factor of 2 and 3, improved the ion-collection efficiency, with corresponding increased efficiency at the highest dose-per-pulse values by a factor 1.4 and 2.2, respectively. The drop-in ion-collection efficiency with increasing dose-per-pulse was accurately modeled using a logistic function fitted to the transmission chamber data. The performance of the model was compared to that of the general theoretical Boag models of ion recombination in ionization chambers. The logistic model was subsequently used to correct for ion recombination at dose rates ranging from conventional to ultra-high, making the transmission chamber useful as a real-time monitor for the dose delivery of FLASH electron beams in a clinical setup.


Asunto(s)
Aceleradores de Partículas/instrumentación , Dosificación Radioterapéutica , Electrones , Humanos , Modelos Teóricos
17.
Br J Radiol ; 93(1106): 20190702, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825653

RESUMEN

OBJECTIVE: Recent in vivo results have shown prominent tissue sparing effect of radiotherapy with ultra-high dose rates (FLASH) compared to conventional dose rates (CONV). Oxygen depletion has been proposed as the underlying mechanism, but in vitro data to support this have been lacking. The aim of the current study was to compare FLASH to CONV irradiation under different oxygen concentrations in vitro. METHODS: Prostate cancer cells were irradiated at different oxygen concentrations (relative partial pressure ranging between 1.6 and 20%) with a 10 MeV electron beam at a dose rate of either 600 Gy/s (FLASH) or 14 Gy/min (CONV), using a modified clinical linear accelerator. We evaluated the surviving fraction of cells using clonogenic assays after irradiation with doses ranging from 0 to 25 Gy. RESULTS: Under normoxic conditions, no differences between FLASH and CONV irradiation were found. For hypoxic cells (1.6%), the radiation response was similar up to a dose of about 5-10 Gy, above which increased survival was shown for FLASH compared to CONV irradiation. The increased survival was shown to be significant at 18 Gy, and the effect was shown to depend on oxygen concentration. CONCLUSION: The in vitro FLASH effect depends on oxygen concentration. Further studies to characterize and optimize the use of FLASH in order to widen the therapeutic window are indicated. ADVANCES IN KNOWLEDGE: This paper shows in vitro evidence for the role of oxygen concentration underlying the difference between FLASH and CONV irradiation.


Asunto(s)
Oxígeno , Neoplasias de la Próstata/radioterapia , Supervivencia Celular/efectos de la radiación , Humanos , Técnicas In Vitro , Masculino , Dosificación Radioterapéutica , Células Tumorales Cultivadas , Hipoxia Tumoral/efectos de la radiación , Ensayo de Tumor de Célula Madre
18.
Radiat Oncol ; 15(1): 77, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32272943

RESUMEN

BACKGROUND: Retrospective studies on MRI-only radiotherapy have been presented. Widespread clinical implementations of MRI-only workflows are however limited by the absence of guidelines. The MR-PROTECT trial presents an MRI-only radiotherapy workflow for prostate cancer using a new single sequence strategy. The workflow incorporated the commercial synthetic CT (sCT) generation software MriPlanner™ (Spectronic Medical, Helsingborg, Sweden). Feasibility of the workflow and limits for acceptance criteria were investigated for the suggested workflow with the aim to facilitate future clinical implementations. METHODS: An MRI-only workflow including imaging, post imaging tasks, treatment plan creation, quality assurance and treatment delivery was created with questionnaires. All tasks were performed in a single MR-sequence geometry, eliminating image registrations. Prospective CT-quality assurance (QA) was performed prior treatment comparing the PTV mean dose between sCT and CT dose-distributions. Retrospective analysis of the MRI-only gold fiducial marker (GFM) identification, DVH- analysis, gamma evaluation and patient set-up verification using GFMs and cone beam CT were performed. RESULTS: An MRI-only treatment was delivered to 39 out of 40 patients. The excluded patient was too large for the predefined imaging field-of-view. All tasks could successfully be performed for the treated patients. There was a maximum deviation of 1.2% in PTV mean dose was seen in the prospective CT-QA. Retrospective analysis showed a maximum deviation below 2% in the DVH-analysis after correction for rectal gas and gamma pass-rates above 98%. MRI-only patient set-up deviation was below 2 mm for all but one investigated case and a maximum of 2.2 mm deviation in the GFM-identification compared to CT. CONCLUSIONS: The MR-PROTECT trial shows the feasibility of an MRI-only prostate radiotherapy workflow. A major advantage with the presented workflow is the incorporation of a sCT-generation method with multi-vendor capability. The presented single sequence approach are easily adapted by other clinics and the general implementation procedure can be replicated. The dose deviation and the gamma pass-rate acceptance criteria earlier suggested was achievable, and these limits can thereby be confirmed. GFM-identification acceptance criteria are depending on the choice of identification method and slice thickness. Patient positioning strategies needs further investigations to establish acceptance criteria.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Marcadores Fiduciales , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Neoplasias de la Próstata/patología , Garantía de la Calidad de Atención de Salud , Estudios Retrospectivos , Programas Informáticos , Tomografía Computarizada por Rayos X , Flujo de Trabajo
19.
Phys Med ; 60: 162-167, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31000078

RESUMEN

Total Marrow Irradiation (TMI) with Helical Tomotherapy is a radiotherapy treatment technique that targets bone marrow and sanctuary sites prior to stem cell or bone marrow transplantation (SCT/BMT). TMI is a complex procedure that involves several critical steps that all need to be carefully addressed for a successful implementation, such as dose homogeneity in field junctions, choice of target margins, integrity of treatment and back-up planning. In this work we present our solution for a robust and reproducible workflow throughout the treatment chain and data for twenty-three patients treated to date. MATERIAL & METHODS: Patients were immobilized in a whole body vacuum cushion and thermoplastic mask. CT-scanning and treatment were performed in two parts with field matching at the upper thigh. Target consisted of marrow containing bone and sanctuary sites. Lungs, kidneys, bowel, heart and liver were defined as organs at risk (OAR). A fast surface scanning system was used to position parts of the body not covered by the imaging system (MVCT) as well as to reduce treatment time. RESULTS: All patients completed their treatment and could proceed with SCT/BMT. Doses to OARs were significantly reduced and target dose homogeneity was improved compared to TBI. Robustness tests performed on field matching and patient positioning support that the field junction technique is adequate. Replacing MVCT with optical surface scanning reduced the treatment time by 25 min per fraction. CONCLUSION: The methodology presented here has shown to provide a safe, robust and reproducible treatment for Total Marrow Irradiation using Tomotherapy.


Asunto(s)
Médula Ósea , Radioterapia de Intensidad Modulada/métodos , Adolescente , Adulto , Médula Ósea/efectos de la radiación , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/terapia , Órganos en Riesgo , Grupo de Atención al Paciente , Posicionamiento del Paciente/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/instrumentación , Trasplante de Células Madre , Factores de Tiempo , Tomografía Computarizada por Rayos X , Adulto Joven
20.
Radiother Oncol ; 139: 40-45, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30755324

RESUMEN

OBJECTIVES: The purpose of this study was to modify a clinical linear accelerator, making it capable of electron beam ultra-high dose rate (FLASH) irradiation. Modifications had to be quick, reversible, and without interfering with clinical treatments. METHODS: Performed modifications: (1) reduced distance with three setup positions, (2) adjusted/optimized gun current, modulator charge rate and beam steering values for a high dose rate, (3) delivery was controlled with a microcontroller on an electron pulse level, and (4) moving the primary and/or secondary scattering foils from the beam path. RESULTS: The variation in dose for a five-pulse delivery was measured to be 1% (using a diode, 4% using film) during 10 minutes after a warm-up procedure, later increasing to 7% (11% using film). A FLASH irradiation dose rate was reached at the cross-hair foil, MLC, and wedge position, with ≥30, ≥80, and ≥300 Gy/s, respectively. Moving the scattering foils resulted in an increased output of ≥120, ≥250, and ≥1000 Gy/s, at the three positions. The beam flatness was 5% at the cross-hair position for a 20 × 20 and a 10 × 10 cm2 area, with and without both scattering foils in the beam. The beam flatness was 10% at the wedge position for a 6 and 2.5 cm diametric area, with and without the scattering foils in the beam path. CONCLUSIONS: A clinical accelerator was modified to produce ultra-high dose rates, high enough for FLASH irradiation. Future work aims to fine-tune the dose delivery, using the on-board transmission chamber signal and adjusting the dose-per-pulse.


Asunto(s)
Electrones/uso terapéutico , Aceleradores de Partículas , Diseño de Equipo , Humanos , Radioterapia/instrumentación , Radioterapia/métodos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA