Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Cell ; 31(10): 2386-2410, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31416823

RESUMEN

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Laccaria/metabolismo , Lipopolisacáridos/metabolismo , Raíces de Plantas/microbiología , Simbiosis/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Lipopolisacáridos/química , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Micorrizas/fisiología , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/metabolismo , Transducción de Señal
2.
J Exp Bot ; 72(10): 3821-3834, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675231

RESUMEN

Lipo-chitooligosaccharides (LCOs) were originally found as symbiotic signals called Nod Factors (Nod-LCOs) controlling the nodulation of legumes by rhizobia. More recently, LCOs were also found in symbiotic fungi and, more surprisingly, very widely in the kingdom Fungi, including in saprophytic and pathogenic fungi. The LCO-V(C18:1, fucosylated/methyl fucosylated), hereafter called Fung-LCOs, are the LCO structures most commonly found in fungi. This raises the question of how legume plants such as Medicago truncatula can discriminate between Nod-LCOs and Fung-LCOs. To address this question, we performed a genome-wide association study on 173 natural accessions of M. truncatula, using a root branching phenotype and a newly developed local score approach. Both Nod-LCOs and Fung-LCOs stimulated root branching in most accessions, but the root responses to these two types of LCO molecules were not correlated. In addition, the heritability of the root response was higher for Nod-LCOs than for Fung-LCOs. We identified 123 loci for Nod-LCO and 71 for Fung-LCO responses, of which only one was common. This suggests that Nod-LCOs and Fung-LCOs both control root branching but use different molecular mechanisms. The tighter genetic constraint of the root response to Fung-LCOs possibly reflects the ancestral origin of the biological activity of these molecules.


Asunto(s)
Medicago truncatula , Micorrizas , Quitina/análogos & derivados , Quitosano , Estudio de Asociación del Genoma Completo , Lipopolisacáridos , Medicago truncatula/genética , Oligosacáridos , Transducción de Señal , Simbiosis
3.
Nature ; 520(7545): 90-3, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25807486

RESUMEN

MicroRNAs (miRNAs) are small regulatory RNA molecules that inhibit the expression of specific target genes by binding to and cleaving their messenger RNAs or otherwise inhibiting their translation into proteins. miRNAs are transcribed as much larger primary transcripts (pri-miRNAs), the function of which is not fully understood. Here we show that plant pri-miRNAs contain short open reading frame sequences that encode regulatory peptides. The pri-miR171b of Medicago truncatula and the pri-miR165a of Arabidopsis thaliana produce peptides, which we term miPEP171b and miPEP165a, respectively, that enhance the accumulation of their corresponding mature miRNAs, resulting in downregulation of target genes involved in root development. The mechanism of miRNA-encoded peptide (miPEP) action involves increasing transcription of the pri-miRNA. Five other pri-miRNAs of A. thaliana and M. truncatula encode active miPEPs, suggesting that miPEPs are widespread throughout the plant kingdom. Synthetic miPEP171b and miPEP165a peptides applied to plants specifically trigger the accumulation of miR171b and miR165a, leading to reduction of lateral root development and stimulation of main root growth, respectively, suggesting that miPEPs might have agronomical applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Péptidos/genética , Proteínas de Plantas/genética , Precursores del ARN/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transcripción Genética/genética
4.
New Phytol ; 222(2): 1030-1042, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30554405

RESUMEN

The arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction. We searched for fungal peptides with similarities with known plant signalling peptides. We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization. Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Micorrizas/genética , Simbiosis , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Medicago truncatula/efectos de los fármacos , Medicago truncatula/microbiología , Micorrizas/efectos de los fármacos , Micorrizas/crecimiento & desarrollo , Péptidos/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simbiosis/efectos de los fármacos , Simbiosis/genética , Transcripción Genética/efectos de los fármacos
5.
New Phytol ; 213(3): 1124-1132, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27748948

RESUMEN

Root colonization by arbuscular mycorrhizal (AM) fungi is a complex and finely tuned process. Previous studies have shown that, among other plant hormones, auxin plays a role in this process but the specific involvement of Aux/IAAs, the key regulators of auxin responses, is still unknown. In this study, we addressed the role of the tomato Sl-IAA27 during AM symbiosis by using Sl-IAA27-RNAi and pSL-IAA27::GUS stable tomato lines. The data show that Sl-IAA27 expression is up-regulated by the AM fungus and that silencing of Sl-IAA27 has a negative impact on AM colonization. Sl-IAA27-silencing resulted in down-regulation of three genes involved in strigolactone synthesis, NSP1, D27 and MAX1, and treatment of Sl-IAA27-silenced plants with the strigolactone analog GR24 complemented their mycorrhizal defect phenotype. Overall, the study identified an Aux/IAA gene as a new component of the signaling pathway controlling AM fungal colonization in tomato. This gene is proposed to control strigolactone biosynthesis via the regulation of NSP1.


Asunto(s)
Glomeromycota/fisiología , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Fenotipo , Raíces de Plantas/metabolismo , Interferencia de ARN
6.
Nature ; 469(7328): 58-63, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21209659

RESUMEN

Arbuscular mycorrhiza (AM) is a root endosymbiosis between plants and glomeromycete fungi. It is the most widespread terrestrial plant symbiosis, improving plant uptake of water and mineral nutrients. Yet, despite its crucial role in land ecosystems, molecular mechanisms leading to its formation are just beginning to be unravelled. Recent evidence suggests that AM fungi produce diffusible symbiotic signals. Here we show that Glomus intraradices secretes symbiotic signals that are a mixture of sulphated and non-sulphated simple lipochitooligosaccharides (LCOs), which stimulate formation of AM in plant species of diverse families (Fabaceae, Asteraceae and Umbelliferae). In the legume Medicago truncatula these signals stimulate root growth and branching by the symbiotic DMI signalling pathway. These findings provide a better understanding of the evolution of signalling mechanisms involved in plant root endosymbioses and will greatly facilitate their molecular dissection. They also open the way to using these natural and very active molecules in agriculture.


Asunto(s)
Lipopolisacáridos/metabolismo , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Daucus carota/química , Daucus carota/metabolismo , Daucus carota/microbiología , Glomeromycota/metabolismo , Lipopolisacáridos/química , Medicago truncatula/química , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , Esporas Fúngicas/química , Esporas Fúngicas/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277808

RESUMEN

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Asunto(s)
Evolución Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiología , Simbiosis/genética , Secuencia de Bases , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
8.
Plant Physiol ; 166(1): 281-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25096975

RESUMEN

Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Magnoliopsida/microbiología , MicroARNs/metabolismo , Micorrizas/fisiología , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , Simbiosis
9.
RNA Biol ; 12(11): 1178-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26400469

RESUMEN

MicroRNAs (miRNAs) are short RNA molecules negatively regulating the expression of many important genes in plants and animals. We have recently shown that plant primary transcripts of miRNAs encode peptides (miPEPs) able to increase specifically the transcription of their associated miRNA.(1) We discuss here the possibility of using miPEPs as a new tool for functional analysis of single members of miRNA families in plants, including in non-model plants, that could avoid transgenic transformation and minimize artifactual interpretation. We also raise several fundamental and crucial questions that need to be address for a deeper understanding of the cellular and molecular mechanisms underlining the regulatory activity of miPEPs.


Asunto(s)
MicroARNs/genética , Péptidos/genética , Plantas/genética , Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Péptidos/metabolismo , Plantas/metabolismo
10.
Nature ; 455(7210): 189-94, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18690209

RESUMEN

A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.


Asunto(s)
Lactonas/metabolismo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dioxigenasas , Genes de Plantas/genética , Lactonas/análisis , Lactonas/química , Lactonas/farmacología , Mutación , Micorrizas/fisiología , Oxigenasas/genética , Oxigenasas/metabolismo , Pisum sativum/efectos de los fármacos , Pisum sativum/crecimiento & desarrollo , Pisum sativum/parasitología , Fenotipo , Reguladores del Crecimiento de las Plantas/análisis , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/parasitología , Simbiosis , Terpenos/análisis , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacología
11.
Plant J ; 72(3): 512-22, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22775306

RESUMEN

Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre-symbiotic growth of the fungus, which releases lipochito-oligosaccharides (Myc-LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up-regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc-LCOs. Fungal colonization was much reduced by over-expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc-LCOs, that prevents over-colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA-mediated negative regulation of NSP2.


Asunto(s)
Glomeromycota/fisiología , Lipopolisacáridos/metabolismo , Medicago truncatula/genética , MicroARNs/genética , Micorrizas/fisiología , Factores de Transcripción/genética , Sitios de Unión , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glomeromycota/citología , Glomeromycota/genética , Glomeromycota/crecimiento & desarrollo , Lactonas/metabolismo , Medicago truncatula/citología , Medicago truncatula/microbiología , Medicago truncatula/fisiología , MicroARNs/metabolismo , Micorrizas/citología , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , ARN de Planta/genética , ARN de Planta/metabolismo , Transducción de Señal , Simbiosis , Factores de Transcripción/metabolismo , Regulación hacia Arriba
12.
New Phytol ; 199(1): 59-65, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23663036

RESUMEN

Nodulation and arbuscular mycorrhization require the activation of plant host symbiotic programs by Nod factors, and Myc-LCOs and COs, respectively. The pathways involved in the perception and downstream signaling of these signals include common and distinct components. Among the distinct components, NSP1, a GRAS transcription factor, has been considered for years to be specifically involved in nodulation. Here, we analyzed the degree of conservation of the NSP1 sequence in arbuscular mycorrhizal (AM) host and non-AM host plants and carefully examined the ability of Medicago truncatula nsp1 mutants to respond to Myc-LCOs and to be colonized by an arbuscular mycorrhizal fungus. In AM-host plants, the selection pressure on NSP1 is stronger than in non-AM host ones. The response to Myc-LCOs and the frequency of mycorrhizal colonization are significantly reduced in the nsp1 mutants. Our results reveal that NSP1, previously described for its involvement in the Nod factor signaling pathway, is also involved in the Myc-LCO signaling pathway. They bring additional evidence on the evolutionary relatedness between nodulation and mycorrhization.


Asunto(s)
Micorrizas/fisiología , Oligosacáridos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Mutación , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Factores de Transcripción/genética
13.
New Phytol ; 198(1): 190-202, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23384011

RESUMEN

The primary objective of this study was to identify the molecular signals present in arbuscular mycorrhizal (AM) germinated spore exudates (GSEs) responsible for activating nuclear Ca(2+) spiking in the Medicago truncatula root epidermis. Medicago truncatula root organ cultures (ROCs) expressing a nuclear-localized cameleon reporter were used as a bioassay to detect AM-associated Ca(2+) spiking responses and LC-MS to characterize targeted molecules in GSEs. This approach has revealed that short-chain chitin oligomers (COs) can mimic AM GSE-elicited Ca(2+) spiking, with maximum activity observed for CO4 and CO5. This spiking response is dependent on genes of the common SYM signalling pathway (DMI1/DMI2) but not on NFP, the putative Sinorhizobium meliloti Nod factor receptor. A major increase in the CO4/5 concentration in fungal exudates is observed when Rhizophagus irregularis spores are germinated in the presence of the synthetic strigolactone analogue GR24. By comparison with COs, both sulphated and nonsulphated Myc lipochito-oligosaccharides (LCOs) are less efficient elicitors of Ca(2+) spiking in M. truncatula ROCs. We propose that short-chain COs secreted by AM fungi are part of a molecular exchange with the host plant and that their perception in the epidermis leads to the activation of a SYM-dependent signalling pathway involved in the initial stages of fungal root colonization.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Núcleo Celular/metabolismo , Quitina/farmacología , Lactonas/farmacología , Medicago truncatula/microbiología , Micorrizas/metabolismo , Raíces de Plantas/microbiología , Proteínas Bacterianas/metabolismo , Núcleo Celular/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Medicago truncatula/efectos de los fármacos , Medicago truncatula/metabolismo , Mutación/genética , Micorrizas/efectos de los fármacos , Oligosacáridos/farmacología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología
15.
New Phytol ; 196(4): 1217-1227, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22967288

RESUMEN

Arbuscular mycorrhizal (AM) fungi are involved in one of the most widespread plant-fungus interactions. A number of studies on the population dynamics of AM fungi have used mitochondrial (mt) DNA sequences, and yet mt AM fungus genomes are poorly known. To date, four mt genomes of three species of AM fungi are available, among which are two from Rhizophagus irregularis. In order to study intra- and interstrain mt genome variability of R. irregularis, we sequenced and de novo assembled four additional mt genomes of this species. We used 454 pyrosequencing and Illumina technologies to directly sequence mt genomes from total genomic DNA. The mt genomes are unique within each strain. Interstrain divergences in genome size, as a result of highly polymorphic intergenic and intronic sequences, were observed. The polymorphism is brought about by three types of variability generating element (VGE): homing endonucleases, DNA polymerase domain-containing open reading frames and small inverted repeats. Based on VGE positioning, mt sequences and nuclear markers, two subclades of R. irregularis were characterized. The discovery of VGEs highlights the great intraspecific plasticity of the R. irregularis mt genome. VGEs allow the design of powerful mt markers for the typing and monitoring of R. irregularis strains in genetic and population studies.


Asunto(s)
Genoma Mitocondrial , Glomeromycota/genética , Micorrizas/genética , Polimorfismo de Nucleótido Simple , ADN Polimerasa Dirigida por ADN/genética , Secuencias Invertidas Repetidas , Repeticiones de Microsatélite , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN/métodos
16.
New Phytol ; 195(4): 857-871, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22738134

RESUMEN

The aims of this study were to investigate the appearance of strigolactones in the green lineage and to determine the primitive function of these molecules. We measured the strigolactone content of several isolated liverworts, mosses, charophyte and chlorophyte green algae using a sensitive biological assay and LC-MS/MS analyses. In parallel, sequence comparison of strigolactone-related genes and phylogenetic analyses were performed using available genomic data and newly sequenced expressed sequence tags. The primitive function of strigolactones was determined by exogenous application of the synthetic strigolactone analog, GR24, and by mutant phenotyping. Liverworts, the most basal Embryophytes and Charales, one of the closest green algal relatives to Embryophytes, produce strigolactones, whereas several other species of green algae do not. We showed that GR24 stimulates rhizoid elongation of Charales, liverworts and mosses, and rescues the phenotype of the strigolactone-deficient Ppccd8 mutant of Physcomitrella patens. These findings demonstrate that the first function of strigolactones was not to promote arbuscular mycorrhizal symbiosis. Rather, they suggest that the strigolactones appeared earlier in the streptophyte lineage to control rhizoid elongation. They may have been conserved in basal Embryophytes for this role and then recruited for the stimulation of colonization by glomeromycotan fungi.


Asunto(s)
Bryopsida/genética , Evolución Molecular , Hepatophyta/genética , Lactonas/metabolismo , Filogenia , Proteínas Algáceas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Bryopsida/efectos de los fármacos , Bryopsida/crecimiento & desarrollo , Chlorophyta/efectos de los fármacos , Chlorophyta/genética , Chlorophyta/metabolismo , Cromatografía Liquida , Genes de Plantas/genética , Hepatophyta/efectos de los fármacos , Hepatophyta/metabolismo , Lactonas/farmacología , Espectrometría de Masas , Datos de Secuencia Molecular , Alineación de Secuencia
17.
Planta ; 233(1): 209-16, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21080198

RESUMEN

Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/embriología , Lactonas/farmacología , Organogénesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/embriología , Análisis de Varianza , Mutación/genética , Raíces de Plantas/anatomía & histología
18.
J Exp Bot ; 62(3): 1049-60, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21045005

RESUMEN

Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Fosfatos/metabolismo , Pisum sativum/fisiología , Transducción de Señal , Simbiosis , Pisum sativum/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
19.
Science ; 372(6544): 864-868, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34016782

RESUMEN

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.


Asunto(s)
Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Marchantia/genética , Marchantia/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiosis , Factores de Transcripción/metabolismo , Transporte Biológico , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Marchantia/microbiología , Mutación , Proteínas de Plantas/genética , Factores de Transcripción/genética
20.
PLoS One ; 15(10): e0240886, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33064769

RESUMEN

Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.


Asunto(s)
Hongos/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Citocininas/análisis , Citocininas/metabolismo , Etilenos/análisis , Etilenos/metabolismo , Giberelinas/análisis , Giberelinas/metabolismo , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Espectrometría de Masas , Micorrizas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Esporas Fúngicas/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA