Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38401890

RESUMEN

BACKGROUND: Atypical/Nor98 scrapie (AS) is an idiopathic infectious prion disease affecting sheep and goats. Recent findings suggest that zoonotic prions from bovine spongiform encephalopathy (C-BSE) may co-propagate with atypical/Nor98 prions in AS sheep brains. Investigating the risk AS poses to humans is crucial. METHODS: To assess the risk of sheep/goat-to-human transmission of AS, we serially inoculated brain tissue from field and laboratory isolates into transgenic mice overexpressing human prion protein (Met129 allele). We studied clinical outcomes as well as presence of prions in brains and spleens. RESULTS: No transmission occurred on the primary passage, with no clinical disease or pathological prion protein in brains and spleens. On subsequent passages, one isolate gradually adapted, manifesting as prions with a phenotype resembling those causing MM1-type sporadic Creutzfeldt-Jakob disease in humans. However, further characterization using in vivo and in vitro techniques confirmed both prion agents as different strains, revealing a case of phenotypic convergence. Importantly, no C-BSE prions emerged in these mice, especially in the spleen, which is more permissive than the brain for C-BSE cross-species transmission. CONCLUSIONS: The results obtained suggest a low the zoonotic for AS. Rare adaptation may allow the emergence of prions phenotypically resembling those spontaneously forming in humans.

2.
Transfusion ; 64(7): 1315-1322, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38745533

RESUMEN

BACKGROUND: The manufacturing processes of plasma products include steps that can remove prions. The efficacy of these steps is measured in validation studies using animal brain-derived prion materials called spikes. Because the nature of the prion agent in blood is not known, the relevance of these spikes, particularly with steps that are based on retention mechanisms such as nanofiltration, is important to investigate. STUDY DESIGN AND METHODS: The aggregation and sizes of PrPres assemblies of microsomal fractions (MFs) extracted from 263K-infected hamster brains were analyzed using velocity gradients. The separated gradient fractions were either inoculated to Tg7 mice expressing hamster-PrPc to measure infectivity or used in Protein Misfolding Cyclic Amplification for measuring seeding activity. The collected data allowed for reanalyzing results from previous nanofiltration validation studies. RESULTS: A significant portion of MFs was found to be composed of small PrPres assemblies, estimated to have a size ≤24 mers (~22-528 kDa), and to contain a minimum of 20% of total prion infectivity. With this data we could calculate reductions of 4.10 log (15 N), 2.53 log (35 N), and 1.77 log (35 N) from validation studies specifically for these small PrPres objects. CONCLUSION: Our gradient data provided evidence that nanofilters can remove the majority of the smallest PrPres entities within microsomes spikes, estimated to be in a size below 24 mers, giving insight about the fact that, in our conditions, size exclusion may not be the only mechanism for retention nanofiltration.


Asunto(s)
Microsomas , Animales , Ratones , Cricetinae , Microsomas/metabolismo , Filtración , Priones/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Nanotecnología
3.
Cell Tissue Res ; 392(1): 149-166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36399162

RESUMEN

Prions are proteinaceous pathogens responsible for a wide range of neurodegenerative diseases in animal and human. Prions are formed from misfolded, ß-sheet rich, and aggregated conformers (PrPSc) of the host-encoded prion protein (PrPC). Prion replication stems from the capacity of PrPSc to self-replicate by templating PrPC conversion and polymerization. The question then arises about the molecular mechanisms of prion replication, host invasion, and capacity to contaminate other species. Studying these mechanisms has gained in recent years further complexity with evidence that PrPSc is a pleiomorphic protein. There is indeed compelling evidence for PrPSc structural heterogeneity at different scales: (i) within prion susceptible host populations with the existence of different strains with specific biological features due to different PrPSc conformers, (ii) within a single infected host with the co-propagation of different strains, and (iii) within a single strain with evidence for co-propagation of PrPSc assemblies differing in their secondary to quaternary structure. This review summarizes current knowledge of prion assembly heterogeneity, potential mechanisms of formation during the replication process, and importance when crossing the species barrier.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Animales , Humanos , Priones/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Priónicas
4.
PLoS Pathog ; 16(7): e1008283, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32702070

RESUMEN

Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism.


Asunto(s)
Proteínas Priónicas/metabolismo , Bazo/metabolismo , Animales , Encéfalo/metabolismo , Ratones , Ratones Transgénicos , Enfermedades por Prión/metabolismo
5.
Acta Neuropathol ; 144(4): 767-784, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35996016

RESUMEN

Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Western Blotting , Bovinos , Ciervos/metabolismo , Humanos , Ratones , Proteínas Priónicas/metabolismo , Priones/metabolismo , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/patología
6.
J Biol Chem ; 295(41): 14025-14039, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788216

RESUMEN

Prions result from a drastic conformational change of the host-encoded cellular prion protein (PrP), leading to the formation of ß-sheet-rich, insoluble, and protease-resistant self-replicating assemblies (PrPSc). The cellular and molecular mechanisms involved in spontaneous prion formation in sporadic and inherited human prion diseases or equivalent animal diseases are poorly understood, in part because cell models of spontaneously forming prions are currently lacking. Here, extending studies on the role of the H2 α-helix C terminus of PrP, we found that deletion of the highly conserved 190HTVTTTT196 segment of ovine PrP led to spontaneous prion formation in the RK13 rabbit kidney cell model. On long-term passage, the mutant cells stably produced proteinase K (PK)-resistant, insoluble, and aggregated assemblies that were infectious for naïve cells expressing either the mutant protein or other PrPs with slightly different deletions in the same area. The electrophoretic pattern of the PK-resistant core of the spontaneous prion (ΔSpont) contained mainly C-terminal polypeptides akin to C1, the cell-surface anchored C-terminal moiety of PrP generated by natural cellular processing. RK13 cells expressing solely the Δ190-196 C1 PrP construct, in the absence of the full-length protein, were susceptible to ΔSpont prions. ΔSpont infection induced the conversion of the mutated C1 into a PK-resistant and infectious form perpetuating the biochemical characteristics of ΔSpont prion. In conclusion, this work provides a unique cell-derived system generating spontaneous prions and provides evidence that the 113 C-terminal residues of PrP are sufficient for a self-propagating prion entity.


Asunto(s)
Secuencia de Aminoácidos , Proteínas PrPSc , Enfermedades por Prión , Agregación Patológica de Proteínas , Eliminación de Secuencia , Animales , Línea Celular , Humanos , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Conformación Proteica en Hélice alfa , Dominios Proteicos , Conejos , Ovinos , Solubilidad
7.
Biochem Biophys Res Commun ; 551: 1-6, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33713980

RESUMEN

Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Priónicas/metabolismo , Reproducción/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Desarrollo Embrionario , Femenino , Proteínas Ligadas a GPI , Genes Letales , Lactancia/genética , Lactancia/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fenotipo , Placentación , Embarazo , Proteínas Priónicas/deficiencia , Proteínas Priónicas/genética , Reproducción/genética , Transcriptoma
8.
Vet Res ; 52(1): 128, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620247

RESUMEN

To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.


Asunto(s)
Ciervos , Proteínas Priónicas/genética , Enfermedad Debilitante Crónica/genética , Animales , Genotipo , Polimorfismo Genético , Proteínas Priónicas/metabolismo , Selección Genética
9.
Arch Biochem Biophys ; 692: 108517, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32738196

RESUMEN

The relationship between prion propagation and the generation of neurotoxic species and clinical onset remains unclear. Several converging lines of evidence suggest that interactions with lipids promote various precursors to form aggregation-prone states that are involved in amyloid fibrils. Here, we compared the cytotoxicities of different soluble isolated oligomeric constructs from murine full-length PrP and from the restricted helical H2H3 domain with their effects on lipid vesicles. The helical H2H3 domain is suggested to be the minimal region of PrP involved in the oligomerization process. The discrete PrP oligomers of both the full-length sequence and the H2H3 domain have de novo ß-sheeted structure when interacting with the membrane. They were shown to permeabilize synthetic negatively charged vesicles in a dose-dependent manner. Restricting the polymerization domain of the full-length PrP to the H2H3 helices strongly diminished the ability of the corresponding oligomers to associate with the lipid vesicles. Furthermore, the membrane impairment mechanism occurs differently for the full-length PrP oligomers and the H2H3 helices, as shown by dye-release and black lipid membrane experiments. The membrane damage caused by the full-length PrP oligomers is correlated to their neuronal toxicity at submicromolar concentrations, as shown by cell culture assays. Although oligomers of synthetic H2H3 could compromise in vitro cell homeostasis, they followed a membrane-disruptive pattern that was different from the full-length oligomers, as revealed by the role of PrPC in cell viability assays.


Asunto(s)
Permeabilidad de la Membrana Celular , Membrana Celular/metabolismo , Neuronas/metabolismo , Proteínas Gestacionales/metabolismo , Multimerización de Proteína , Animales , Membrana Celular/genética , Ratones , Ratones Noqueados , Proteínas Gestacionales/genética , Dominios Proteicos , Estructura Secundaria de Proteína
10.
PLoS Pathog ; 13(9): e1006557, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28880932

RESUMEN

Mammalian prions, the pathogens that cause transmissible spongiform encephalopathies, propagate by self-perpetuating the structural information stored in the abnormally folded, aggregated conformer (PrPSc) of the host-encoded prion protein (PrPC). To date, no structural model related to prion assembly organization satisfactorily describes how strain-specified structural information is encoded and by which mechanism this information is transferred to PrPC. To achieve progress on this issue, we correlated the PrPSc quaternary structural transition from three distinct prion strains during unfolding and refolding with their templating activity. We reveal the existence of a mesoscopic organization in PrPSc through the packing of a highly stable oligomeric elementary subunit (suPrP), in which the strain structural determinant (SSD) is encoded. Once kinetically trapped, this elementary subunit reversibly loses all replicative information. We demonstrate that acquisition of the templating interface and infectivity requires structural rearrangement of suPrP, in concert with its condensation. The existence of such an elementary brick scales down the SSD support to a small oligomer and provide a basis of reflexion for prion templating process and propagation.


Asunto(s)
Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Desplegamiento Proteico , Animales , Enfermedades Transmisibles , Ratones , Conformación Proteica
11.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405050

RESUMEN

Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer's disease, Parkinson's disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.


Asunto(s)
Estrés Oxidativo , Agregación Patológica de Proteínas/metabolismo , Proteínas/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedades por Prión/metabolismo , Agregado de Proteínas
12.
J Biol Chem ; 292(40): 16688-16696, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28821618

RESUMEN

Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrPSc). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrPSc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas PrPSc/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Animales , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPSc/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología
13.
Stem Cells ; 35(3): 754-765, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27641601

RESUMEN

The prion protein is infamous for its involvement in a group of neurodegenerative diseases known as Transmissible Spongiform Encephalopathies. In the longstanding quest to decipher the physiological function of its cellular isoform, PrPC , the discovery of its participation to the self-renewal of hematopoietic and neural stem cells has cast a new spotlight on its potential role in stem cell biology. However, still little is known on the cellular and molecular mechanisms at play. Here, by combining in vitro and in vivo murine models of PrPC depletion, we establish that PrPC deficiency severely affects the Notch pathway, which plays a major role in neural stem cell maintenance. We document that the absence of PrPC in a neuroepithelial cell line or in primary neurospheres is associated with drastically reduced expression of Notch ligands and receptors, resulting in decreased levels of Notch target genes. Similar alterations of the Notch pathway are recovered in the neuroepithelium of Prnp-/- embryos during a developmental window encompassing neural tube closure. In addition, in line with Notch defects, our data show that the absence of PrPC results in altered expression of Nestin and Olig2 as well as N-cadherin distribution. We further provide evidence that PrPC controls the expression of the epidermal growth factor receptor (EGFR) downstream from Notch. Finally, we unveil a negative feedback action of EGFR on both Notch and PrPC . As a whole, our study delineates a molecular scenario through which PrPC takes part to the self-renewal of neural stem and progenitor cells. Stem Cells 2017;35:754-765.


Asunto(s)
Células-Madre Neurales/metabolismo , Proteínas Priónicas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Cadherinas/metabolismo , Comunicación Celular , Línea Celular , Linaje de la Célula , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Ratones
14.
Emerg Infect Dis ; 23(6): 946-956, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28518033

RESUMEN

In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD.


Asunto(s)
Bioensayo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Proteínas PrPC/química , Animales , Enfermedades Asintomáticas , Médula Ósea/metabolismo , Médula Ósea/patología , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Proteínas PrPC/metabolismo , Proteínas PrPC/patogenicidad , Pliegue de Proteína , Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Reino Unido
15.
J Virol ; 90(23): 10867-10874, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681129

RESUMEN

Prions are proteinaceous pathogens responsible for subacute spongiform encephalopathies in animals and humans. The prions responsible for bovine spongiform encephalopathy (BSE) are zoonotic agents, causing variant Creutzfeldt-Jakob disease (CJD) in humans. The transfer of prions between species is limited by a species barrier, which is thought to reflect structural incompatibilities between the host cellular prion protein (PrPC) and the infecting pathological PrP assemblies (PrPSc) constituting the prion. A BSE strain variant, designated L-BSE and responsible for atypical, supposedly spontaneous forms of prion diseases in aged cattle, demonstrates zoonotic potential, as evidenced by its capacity to propagate more easily than classical BSE in transgenic mice expressing human PrPC and in nonhuman primates. In humanized mice, L-BSE propagates without any apparent species barrier and shares similar biochemical PrPSc signatures with the CJD subtype designated MM2-cortical, thus opening the possibility that certain CJD cases classified as sporadic may actually originate from L-type BSE cross-transmission. To address this issue, we compared the biological properties of L-BSE and those of a panel of CJD subtypes representative of the human prion strain diversity using standard strain-typing criteria in human PrP transgenic mice. We found no evidence that L-BSE causes a known form of sporadic CJD. IMPORTANCE: Since the quasi-extinction of classical BSE, atypical BSE forms are the sole BSE variants circulating in cattle worldwide. They are observed in rare cases of old cattle, making them difficult to detect. Extrapolation of our results suggests that L-BSE may propagate in humans as an unrecognized form of CJD, and we urge both the continued utilization of precautionary measures to eliminate these agents from the human food chain and active surveillance for CJD phenotypes in the general population.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Encefalopatía Espongiforme Bovina/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Síndrome de Creutzfeldt-Jakob/etiología , Síndrome de Creutzfeldt-Jakob/transmisión , Modelos Animales de Enfermedad , Encefalopatía Espongiforme Bovina/etiología , Encefalopatía Espongiforme Bovina/transmisión , Variación Genética , Especificidad del Huésped , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPC/genética , Proteínas PrPC/patogenicidad , Proteínas PrPSc/genética , Proteínas PrPSc/patogenicidad
16.
J Virol ; 90(15): 6963-6975, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226369

RESUMEN

UNLABELLED: Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE: Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Scrapie/metabolismo , Eliminación de Secuencia , Secuencia de Aminoácidos , Animales , Ratones , Ratones Transgénicos , Proteínas PrPC/química , Conformación Proteica , Homología de Secuencia de Aminoácido , Ovinos , Relación Estructura-Actividad
17.
J Virol ; 90(3): 1638-46, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608316

RESUMEN

UNLABELLED: Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE: Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.


Asunto(s)
Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Enfermedades por Prión/patología , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Mutación Missense , Eliminación de Secuencia , Ovinos
18.
PLoS Pathog ; 11(8): e1005077, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26248157

RESUMEN

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.


Asunto(s)
Proteínas PrPC/genética , Scrapie/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Femenino , Immunoblotting , Masculino , Espectrometría de Masas , Datos de Secuencia Molecular , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Especificidad de la Especie
19.
J Virol ; 89(12): 6287-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855735

RESUMEN

UNLABELLED: Prion diseases are characterized by conformational changes of a cellular prion protein (PrP(C)) into a ß-sheet-enriched and aggregated conformer (PrP(Sc)). Shadoo (Sho), a member of the prion protein family, is expressed in the central nervous system (CNS) and is highly conserved among vertebrates. On the basis of histoanatomical colocalization and sequence similarities, it is suspected that Sho and PrP may be functionally related. The downregulation of Sho expression during prion pathology and the direct interaction between Sho and PrP, as revealed by two-hybrid analysis, suggest a relationship between Sho and prion replication. Using biochemical and biophysical approaches, we demonstrate that Sho forms a 1:1 complex with full-length PrP with a dissociation constant in the micromolar range, and this interaction consequently modifies the PrP-folding pathway. Using a truncated PrP that mimics the C-terminal C1 fragment, an allosteric binding behavior with a Hill number of 4 was observed, suggesting that at least a tetramerization state occurs. A cell-based prion titration assay performed with different concentrations of Sho revealed an increase in the PrP(Sc) conversion rate in the presence of Sho. Collectively, our observations suggest that Sho can affect the prion replication process by (i) acting as a holdase and (ii) interfering with the dominant-negative inhibitor effect of the C1 fragment. IMPORTANCE: Since the inception of the prion theory, the search for a cofactor involved in the conversion process has been an active field of research. Although the PrP interactome presents a broad landscape, candidates corresponding to specific criteria for cofactors are currently missing. Here, we describe for the first time that Sho can affect PrP structural dynamics and therefore increase the prion conversion rate. A biochemical characterization of Sho-PrP indicates that Sho acts as an ATP-independent holdase.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Priones/metabolismo , Pliegue de Proteína , Animales , Proteínas Ligadas a GPI , Ratones , Unión Proteica , Multimerización de Proteína , Técnicas del Sistema de Dos Híbridos
20.
PLoS Pathog ; 10(6): e1004202, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945656

RESUMEN

The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/diagnóstico , Encefalopatía Espongiforme Bovina/diagnóstico , Pruebas Hematológicas/métodos , Priones/sangre , Secuencia de Aminoácidos , Animales , Bovinos , Síndrome de Creutzfeldt-Jakob/sangre , Síndrome de Creutzfeldt-Jakob/transmisión , Diagnóstico Precoz , Encefalopatía Espongiforme Bovina/sangre , Encefalopatía Espongiforme Bovina/transmisión , Humanos , Macaca fascicularis , Masculino , Ovinos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA