Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 9, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996441

RESUMEN

BACKGROUND: Gasdermins are ancient (>500million-years-ago) proteins, constituting a family of pore-forming proteins that allow the release of intracellular content including proinflammatory cytokines. Despite their importance in the immune response, and although gasdermin and gasdermin-like genes have been identified across a wide range of animal and non-animal species, there is limited information about the evolutionary history of the gasdermin family, and their functional roles after infection. In this study, we assess the lytic functions of different gasdermins across Metazoa species, and use a mouse model of sepsis to evaluate the expression of the different gasdermins during infection. RESULTS: We show that the majority of gasdermin family members from distantly related animal clades are pore-forming, in line with the function of the ancestral proto-gasdermin and gasdermin-like proteins of Bacteria. We demonstrate the first expansion of this family occurred through a duplication of the ancestral gasdermin gene which formed gasdermin E and pejvakin prior to the divergence of cartilaginous fish and bony fish ~475 mya. We show that pejvakin from cartilaginous fish and mammals lost the pore-forming functionality and thus its role in cell lysis. We describe that the pore-forming gasdermin A formed ~320 mya as a duplication of gasdermin E prior to the divergence of the Sauropsida clade (the ancestral lineage of reptiles, turtles, and birds) and the Synapsid clade (the ancestral lineage of mammals). We then demonstrate that the gasdermin A gene duplicated to form the rest of the gasdermin family including gasdermins B, C, and D: pore-forming proteins that present a high variation of the exons in the linker sequence, which in turn allows for diverse activation pathways. Finally, we describe expression of murine gasdermin family members in different tissues in a mouse sepsis model, indicating function during infection response. CONCLUSIONS: In this study we explored the evolutionary history of the gasdermin proteins in animals and demonstrated that the pore-formation functionality has been conserved from the ancient proto-gasdermin protein. We also showed that one gasdermin family member, pejvakin, lost its pore-forming functionality, but that all gasdermin family members, including pejvakin, likely retained a role in inflammation and the physiological response to infection.


Asunto(s)
Piroptosis , Sepsis , Animales , Muerte Celular , Citocinas , Inflamación/genética , Inflamación/metabolismo , Mamíferos , Ratones , Proteínas , Piroptosis/fisiología
2.
J Clin Immunol ; 42(7): 1421-1432, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35716229

RESUMEN

Pathogenic RIPK1 variants have been described as the cause of two different inborn errors of immunity. Biallelic loss-of-function variants cause the recessively inherited RIPK1 deficiency, while monoallelic variants impairing the caspase-8-mediated RIPK1 cleavage provoke a novel autoinflammatory disease (AID) called cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome. The aim of this study was to characterize the pathogenicity of two novel RIPK1 variants located at the cleavage site of caspase-8 detected in patients with dominantly-inherited, early-onset undefined AID. RIPK1 genotyping was performed by Sanger and next-generation sequencing. Clinical and analytical data were collected from medical charts, and in silico and in vitro assays were performed to evaluate the functional consequences. Genetic analyses identified two novel heterozygous RIPK1 variants at the caspase-8 cleavage site (p.Leu321Arg and p.Asp324Gly), which displayed a perfect intrafamilial phenotype-genotype segregation following a dominant inheritance pattern. Structural analyses suggested that these variants disrupt the normal RIPK1 structure, probably making it less accessible to and/or less cleavable by caspase-8. In vitro experiments confirmed that the p.Leu321Arg and p.Asp324Gly RIPK1 variants were resistant to caspase-8-mediated cleavage and induced a constitutive activation of necroptotic pathway in a similar manner that previously characterized RIPK1 variants causing CRIA syndrome. All these results strongly supported the pathogenicity of the two novel RIPK1 variants and the diagnosis of CRIA syndrome in all enrolled patients. Moreover, the evidences here collected expand the phenotypic and genetic diversity of this recently described AID, and provide interesting data about effectiveness of treatments that may benefit future patients.


Asunto(s)
Apoptosis , Enfermedades Autoinflamatorias Hereditarias , Humanos , Caspasa 8/genética , Caspasa 8/metabolismo , Enfermedades Autoinflamatorias Hereditarias/diagnóstico , Enfermedades Autoinflamatorias Hereditarias/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630144

RESUMEN

The release of nucleotides during necrosis or apoptosis has been described to have both proinflammatory and anti-inflammatory effect on the surrounding cells. Here we describe how low concentrations of UTP and ATP applied during macrophage priming enhance IL-1ß production when subsequently the NLRP3 inflammasome is activated in murine resident peritoneal macrophages. Deficiency or pharmacological inhibition of the purinergic receptor P2Y2 reverted the increase of IL-1ß release induced by nucleotides. IL-1ß increase was found dependent on the expression of Il1b gene and probably involving JNK activity. On the contrary, nucleotides decreased the production of a different proinflammatory cytokines such as TNF-α. These results suggest that nucleotides could shape the response of macrophages to obtain a unique proinflammatory signature that might be relevant in unrevealing specific inflammatory conditions.


Asunto(s)
Interleucina-1beta/metabolismo , Macrófagos Peritoneales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Adenosina Trifosfato/metabolismo , Animales , MAP Quinasa Quinasa 4/metabolismo , Ratones Endogámicos C57BL , Uridina Trifosfato/metabolismo
5.
Sci Adv ; 7(38): eabf4468, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34524838

RESUMEN

The NLRP3 inflammasome is activated by a wide range of stimuli and drives diverse inflammatory diseases. The decrease of intracellular K+ concentration is a minimal upstream signal to most of the NLRP3 activation models. Here, we found that cellular K+ efflux induces a stable structural change in the inactive NLRP3, promoting an open conformation as a step preceding activation. This conformational change is facilitated by the specific NLRP3 FISNA domain and a unique flexible linker sequence between the PYD and FISNA domains. This linker also facilitates the ensemble of NLRP3PYD into a seed structure for ASC oligomerization. The introduction of the NLRP3 PYD-linker-FISNA sequence into NLRP6 resulted in a chimeric receptor able to be activated by K+ efflux­specific NLRP3 activators and promoted an in vivo inflammatory response to uric acid crystals. Our results establish that the amino-terminal sequence between PYD and NACHT domain of NLRP3 is key for inflammasome activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA