Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 239(1): 350-363, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129435

RESUMEN

The ongoing nitrogen (N) deposition has led to profound changes in aboveground and belowground ecosystems. However, the stability of plant and soil microbial community toward N addition in terms of resistance and resilience is less understood. We established a long-running field trial (2008-2018) in a series of N applications in combination with a mowing and fencing (unmown) treatment in a semiarid steppe. We assessed the resistance via ongoing N treatment of one subplot and the resilience via discontinuing N treatment in another to promote natural recovery since 2014. Plant resistance was negatively correlated with N application rate, while microbial resistance was independent of N rate. Mowing significantly reduced plant resistance and resilience, reduced soil microbial resistance but improved its resilience. Generally, plants are more resilient but less resistant to N than soil microbes. The two sides of resistance-resilience relationship were revealed: trade-offs exist between resistance and resilience for both plants and microbes at the community level; and trade-offs between resistance and resilience cannot be scaled down to species/group level. This study provided an important theoretical basis for the recovery and conservation of semiarid steppe and new insight into resistance-resilience relationship.


Asunto(s)
Ecosistema , Microbiota , Microbiología del Suelo , Plantas , Nitrógeno , Suelo , Pradera
2.
Microb Ecol ; 85(3): 1113-1135, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36319743

RESUMEN

This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.


Asunto(s)
Glycine max , Microbiota , Glycine max/microbiología , Bioprospección , Bacterias/genética , Bacterias/metabolismo , Agricultura , Suelo , Productos Agrícolas , Microbiología del Suelo
3.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36794885

RESUMEN

The word endosphere represents the internal tissues of plants harboring diverse microbes capable of producing active biological products for various biotechnological and agricultural applications. The discreet standalone genes and interdependent association of microbial endophytes with plants can be an underlining factor in predicting their ecological functions. Yet-to-be-cultured endophytic microbes have geared the invention of metagenomics in various environmental studies to determine their structural diversity and functional genes with novel attributes. This review presents an overview of the general concept of metagenomics in microbial endophytic studies. First, the endosphere microbial communities were introduced, followed by metagenomic insights in endosphere biology, a promising technology. Also, the major application of metagenomics and a short brief on DNA stable isotope probing in determining functions and metabolic pathways of microbial metagenome were highlighted. Therefore, the use of metagenomics promises to provide answers to yet-to-be-cultured microbes by unraveling their diversity, functional attributes, and metabolic pathways with prospects in integrated and sustainable agriculture.


Asunto(s)
Metagenoma , Microbiota , Metagenómica , Microbiota/genética , Endófitos , Plantas
4.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770994

RESUMEN

The utilization of binary oxide nanoparticles is geometrically increasing due to their numerous applications. Their intentional or accidental release after usage has led to their omnipresence in the environment. The usage of sludge or fertilizer containing binary oxide nanoparticles is likely to increase the chance of the plants being exposed to these binary oxide nanoparticles. The aim of the present review is to assess the detailed positive and negative impacts of these oxide nanoparticles on the soybean plants and its rhizosphere. In this study, methods of synthesizing binary oxide nanoparticles, as well as the merits and demerits of these methods, are discussed. Furthermore, various methods of characterizing the binary oxide nanoparticles in the tissues of soybean are highlighted. These characterization techniques help to track the nanoparticles inside the soybean plant. In addition, the assessment of rhizosphere microbial communities of soybean that have been exposed to these binary oxide nanoparticles is discussed. The impacts of binary oxide nanoparticles on the leaf, stem, root, seeds, and rhizosphere of soybean plant are comprehensively discussed. The impacts of binary oxides on the bioactive compounds such as phytohormones are also highlighted. Overall, it was observed that the impacts of the oxide nanoparticles on the soybean, rhizosphere, and bioactive compounds were dose-dependent. Lastly, the way forward on research involving the interactions of binary oxide nanoparticles and soybean plants is suggested.


Asunto(s)
Nanopartículas , Óxidos , Suelo , Glycine max , Reguladores del Crecimiento de las Plantas , Rizosfera , Microbiología del Suelo , Raíces de Plantas
5.
Arch Microbiol ; 204(5): 246, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394234

RESUMEN

The microbial network of rhizosphere is unique as a result of root exudate. Insights into the relationship that exists with the energy metabolic functional groups will help in biofertilizer production. We hypothesize that there exists a relationship between nitrifying microorganisms and other energy metabolic functional microbial groups in the maize rhizosphere across different growth stages. Nucleospin soil DNA extraction kit was used to extract DNA from soil samples collected from maize rhizosphere. The 16S metagenomics sequencing was carried out on Illumina Miseq. The sequence obtained was analyzed on MG-RAST. Nitrospira genera were the most abundant in the nitrifying community. Nitrifying microorganisms were more than each of the studied functional groups except for nitrogen-fixing bacteria. Also, majority of the microorganisms were noticed at the fruiting stage and there was variation in the microbial structure across different growth stages. The result showed that there exists a substantial amount of both negative and positive correlation within the nitrifying microorganisms, and between them and other energy metabolic functional groups. The knowledge obtained from this study will help improve the growth and development of maize through modification of the rhizosphere microbial community structure.


Asunto(s)
Microbiota , Rizosfera , Suelo/química , Microbiología del Suelo , Zea mays/microbiología
6.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012686

RESUMEN

The plant microbiome is involved in enhancing nutrient acquisition, plant growth, stress tolerance, and reducing chemical inputs. The identification of microbial functional diversity offers the chance to evaluate and engineer them for various agricultural processes. Using a shotgun metagenomics technique, this study examined the functional diversity and metabolic potentials of microbial communities in the rhizosphere of soybean genotype link 678. The dominant genera are Geobacter, Nitrobacter, Burkholderia, Candidatus, Bradyrhizobium and Streptomyces. Twenty-one functional categories were present, with fourteen of the functions being dominant in all samples. The dominant functions include carbohydrates, fatty acids, lipids and isoprenoids, amino acids and derivatives, sulfur metabolism, and nitrogen metabolism. A Kruskal-Wallis test was used to test samples' diversity differences. There was a significant difference in the alpha diversity. ANOSIM was used to analyze the similarities of the samples and there were significant differences between the samples. Phosphorus had the highest contribution of 64.3% and was more prominent among the soil properties that influence the functional diversity of the samples. Given the functional groups reported in this study, soil characteristics impact the functional role of the rhizospheric microbiome of soybean.


Asunto(s)
Fabaceae , Microbiota , Microbiota/genética , Rizosfera , Suelo/química , Microbiología del Suelo , Sudáfrica , Glycine max/genética
7.
Curr Genet ; 67(6): 891-907, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34195871

RESUMEN

Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, Stenotrophomonas species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The S. indicatrix BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the Stenotrophomonas species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of S. indicatrix BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of S. indicatrix BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the S. indicatrix BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of S. indicatrix BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of S. indicatrix BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.


Asunto(s)
Genoma Bacteriano , Genómica , Helianthus/fisiología , Desarrollo de la Planta , Stenotrophomonas/fisiología , Simbiosis , Biología Computacional/métodos , Endófitos , Ambiente , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Metabolismo Secundario/genética , Microbiología del Suelo
8.
BMC Microbiol ; 21(1): 337, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886803

RESUMEN

BACKGROUND: Microbial communities inhabiting the rhizosphere play pivotal roles in determining plant health and yield. Manipulation of the rhizosphere microbial community is a promising means to enhance the productivity of economically viable and important agricultural crops such as sunflower (Helianthus annuus). This study was designed to gain insights into the taxonomic and functional structures of sunflower rhizosphere and bulk soil microbiome at two different locations (Sheila and Itsoseng) in South Africa. RESULTS: Microbial DNA extracted from the sunflower rhizosphere and bulk soils was subjected to next-generation sequencing using 16S amplicon sequencing technique. Firmicutes, Actnobacteria and Proteobacteria predominated sunflower rhizosphere soils. Firmicutes, Cyanobacteria, Deinococcus-Thermus and Fibrobacteres were positively influenced by Na+ and clay content, while Actinobacteria, Thaumarchaeota, Bacteroidetes, Planctomycetes, Aquificae and Chloroflexi were positively influenced by soil resistivity (Res) and Mg2+. The community-level physiological profiling (CLPP) analysis showed that the microbial communities in SHR and ITR used the amino acids tryptophan and malic acid efficiently. The metabolisms of these carbon substrates may be due to the dominant nature of some of the organisms, such as Actinobacteria in the soils. CONCLUSION: The CLPP measurements of soil from sunflower rhizosphere were different from those of the bulk soil and the degree of the variations were based on the type of carbon substrates and the soil microbial composition. This study has shown the presence of certain taxa of rhizobacteria in sunflower rhizosphere which were positively influenced by Na+ and Mg2+, and taxa obtained from SHR and ITR were able to effectively utilized tryptophan and malic acid. Many unclassified microbial groups were also discovered and it is therefore recommended that efforts should further be made to isolate, characterize and identify these unclassified microbial species, as it might be plausible to discover new microbial candidates that can further be harnessed for biotechnological purpose.


Asunto(s)
Helianthus/microbiología , Microbiota/fisiología , Rizosfera , Aminoácidos/análisis , Aminoácidos/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Carbono/análisis , Carbono/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Helianthus/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo
9.
Arch Microbiol ; 203(6): 3605-3613, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33973044

RESUMEN

Understanding the functions carried out by rhizosphere microbiomes will further explore their importance in biotechnological improvement and agricultural sustainability. This study presents one of the foremost attempts to understand the functional diversity of the rhizosphere microbiome in mono-cropping and crop rotation farming sites using shotgun metagenomic techniques. We hypothesized that the functional diversity would vary in the cropping sites and more abundant in the rotational cropping site. Hence, we carried out complete DNA extraction from the bulk and rhizospheric soils associated with maize plant cultivated on the mono-cropping farm (LT and LTc) and the crop rotation farm (VD and VDc), respectively, and sequenced employing shotgun approach. Using the SEED subsystem, our result revealed that a total of 24 functional categories dominated the rotational cropping site, while four functional categories dominated the mono-cropping sites. Alpha diversity assessment showed that no significant difference (p > 0.05) was observed across the cropping sites, while beta diversity assessment revealed a significant difference. Going by the high abundance of functional groups observed in the samples from the crop rotational site, it is evident that cropping systems influenced the functions of soil microbiomes. Worthy of note is the high abundance of unknown functions associated with these maize rhizosphere microbiomes. This is an indication that there are still some under-investigated functional genes associated with the maize rhizosphere microbiome. It is, therefore, imperative that further studies explore these functional genes for their agricultural and biotechnological potentials.


Asunto(s)
Productos Agrícolas/microbiología , Microbiota , Rizosfera , Microbiología del Suelo , Zea mays/microbiología , Metagenómica
10.
Int Microbiol ; 24(1): 1-17, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32737846

RESUMEN

Agricultural food production and sustainability need intensification to address the current global food supply to meet human demand. The continuous human population increase and other anthropogenic activities threaten food security. Agrochemical inputs have long been used in conventional agricultural systems to boost crop productivity, but they are disadvantageous to a safe environment. Towards developing environmentally friendly agriculture, efforts are being directed in exploring biological resources from soil and plant microbes. The survival of the rhizosphere and endosphere microbiota is influenced by biotic and abiotic factors. Plant microbiota live interdependently with the host plants. Endophytes are regarded as colonizer microbes inhabiting and establishing microbial communities within the plant tissue. Their activities are varied and include fixing atmospheric nitrogen, solubilizing phosphate, synthesis of siderophores, secretion of metabolite-like compounds containing active biocontrol agents in the control of phytopathogens, and induced systemic resistance that stimulates plant response to withstand stress. Exploring beneficial endophyte resources in the formulation of bio-inoculants, such as biofertilizers, as an alternative to agrochemicals (fertilizers and pesticides) in developing environmentally friendly agriculture and for incorporation into crop breeding and disease control program is promising. Therefore, in this review, endosphere microbial ecology, associating environmental factors, and their roles that contribute to their effectiveness in promoting plant growth for maximum agricultural crop productivity were highlighted.


Asunto(s)
Bacterias/aislamiento & purificación , Endófitos/aislamiento & purificación , Microbiota , Microbiología del Suelo , Agricultura , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Endófitos/clasificación , Endófitos/genética , Endófitos/metabolismo , Fertilizantes/análisis , Fertilizantes/microbiología
11.
Int Microbiol ; 24(3): 325-335, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33666787

RESUMEN

Soil microbial diversity is believed to be vital in maintaining soil quality and health. Limited knowledge exists on the impact of cropping systems (mono-cropping and crop rotation) on the diversity of the whole soil microbiome. In this study, we investigated the effects of two cropping systems, namely crop rotation and mono-cropping, on the community structure and diversity of rhizosphere microbiome in the rhizosphere and bulk soil associated with maize plant using shotgun metagenomics. Whole DNA was extracted from bulk, and rhizosphere soils associated with maize plant from the mono-cropping (LT and LTc) and crop rotation (VD and VDc) sites, respectively, and sequenced employing shotgun metagenomics. The results obtained via the Subsystem database showed 23 bacteria, 2 fungi, and 3 archaea most abundant phyla. The major bacterial phyla are Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Gemmatimonadetes, Acidobacteria, Cyanobacteria, Spirochaetes, Aquificae, Verrucomicrobia, Chloroflexi, Planctomycetes, and Chlorobi. The major fungi phyla observed were Ascomycota and Basidiomycota, while the dominant archaea phyla are Euryarchaeota, Thaumarchaeota, and Crenarchaeota. Our diversity assessment showed that the rhizosphere microbial community was more abundant in the samples from the rotational crop site following VD>VDc>LT>LTc. Alpha diversity showed that there was no significant difference (P>0.05) in the soil microbial communities (P>0.05), while better diversity indicated that a significant difference (P = 0.01) occurred. Taken together, crop rotational practice was found to positively influence the rhizosphere microbial community associated with the maize plant.


Asunto(s)
Biodiversidad , Microbiota , Raíces de Plantas/microbiología , Zea mays/microbiología , Agricultura/métodos , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Hongos/clasificación , Hongos/genética , Metagenómica , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo
12.
Appl Microbiol Biotechnol ; 105(11): 4487-4500, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34043079

RESUMEN

Maize is an essential cereal crop and the third most essential food crop globally. The extensive dependence on pesticides and chemical fertilizers to control pests and increase crop yield, respectively, has generated an injurious impact on soil and animal health. Plant growth-promoting rhizobacteria (PGPR), which depict a broad array of bacteria inhabiting the root vicinity and root surface, have proven to be a better alternative. These organisms expressly or by implication foster the growth and development of plants by producing and secreting numerous regulatory compounds in the rhizosphere. Some rhizobacteria found to be in association with Zea mays rhizosphere include Bacillus sp., Azotobacter chroococcum, Burkholderia spp., Streptomyces spp., Pseudomonas spp., Paenibacillus spp., and Sphingobium spp. For this review, the mechanism of action of these rhizospheric bacteria was grouped into three, which are bioremediation, biofertilization, and biocontrol. KEY POINTS: • Plant-microbe interaction is vital for ecosystem functioning. • PGPR can produce volatile cues to deter ravaging insects from plants.


Asunto(s)
Ecosistema , Zea mays , Azotobacter , Bacterias , Raíces de Plantas , Rizosfera , Microbiología del Suelo
13.
Antonie Van Leeuwenhoek ; 114(10): 1683-1708, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34387781

RESUMEN

The region around the plant root referred to as the rhizosphere, is the zone where various microbial activity occurs. It performs crucial functions such as increasing the uptake of nutrients for plant development and preventing plant against plant pathogens. Keeping in mind the beneficial role performed by rhizospheric microorganisms, rhizobacterial species were isolated from the maize and soybean plant's rhizosphere. The isolated microorganisms were evaluated for their biochemical characteristics, plant growth-promoting potentials, tolerance to different environmental conditions, and their antifungal activity against Fusarium graminearum, a fungal pathogen that infects maize. The rhizobacterial isolates with multiple plant growth-promoting potentials were identified as Bacillus spp (80.77%), Rhodocyclaceae bacterium (3.85%), Enterococcus spp (3.85%). Massilia spp (3.85%. and Pseudomonas (7.69%) species based on their 16S rRNA molecular characterization. The bacterial isolates possessed antifungal activities against Fusarium graminearum, promote maize and soybeans seed under laboratory conditions, and exhibited different levels of tolerance to pH, temperature, salt, and heavy metal. Based on this, the whole genome sequencing of Bacillus sp. OA1, Pseudomonas rhizosphaerea OA2, and Pseudomonas sp. OA3 was performed using Miseq Illumina system to determine the functional genes and secondary metabolites responsible for their plant growth-promoting potential Thus, the result of this research revealed that the selected bacterial isolates possess plant growth-promoting potentials that can make them a potential candidate to be employed as microbial inoculants for protecting plants against phytopathogens, environmental stress and increasing plant growth and productivity.


Asunto(s)
Desarrollo de la Planta , Plantas Comestibles , Fusarium , ARN Ribosómico 16S/genética , Sudáfrica
14.
J Sci Food Agric ; 101(14): 5834-5841, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33788958

RESUMEN

BACKGROUND: The harmful effect of chemical fertilizer application on human health and the environment as a modern method of meeting the food demand of the increasing world population demands an urgent alternative that is environmentally friendly, which will pose no harm to human health and the environment. Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms that provide various ecological functions in increasing soil fertility and enhancing plant growth. This present study aimed to propagate, characterize and examine the effect of viable arbuscular mycorrhizal fungal spores on maize (Zea mays L) hosts using molecular methods. The propagation of AMF in the host plant using sterile soil and vermiculite was conducted in the greenhouse. RESULT: The effect of AMF inoculation revealed a significant difference (P > 0.05) in maize growth, root colonization and AMF spore count when compared with the control. In all the parameters measured in this study, all the AMF spores propagated had a positive effect on the maize plant over the control, with the highest value mostly recorded in Rhizophagus irregularis AOB1. The molecular characterization of the spore using a specific universal primer for Glomeromycota established the success of the propagation process, which enhanced the classification of the AMF species into Rhizophagus irregularis OAB1, Glomus mosseae OAB2 and Paraglomus occultum OAB3. CONCLUSION: This finding will be a starting point in producing arbuscular mycorrhizal inoculum as a biofertilizer to enhance plant growth promotion. © 2021 Society of Chemical Industry.


Asunto(s)
Hongos/aislamiento & purificación , Micorrizas/aislamiento & purificación , Esporas Fúngicas/crecimiento & desarrollo , Zea mays/microbiología , Hongos/clasificación , Hongos/genética , Hongos/crecimiento & desarrollo , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación , Zea mays/crecimiento & desarrollo
15.
J Sci Food Agric ; 101(8): 3193-3201, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33215702

RESUMEN

BACKGROUND: The geographical diversification in chemical, biological and physical properties of plant biospheres instigates heterogenicity in the proliferation of important soil microbiome. Controlling functions and structure of plant rhizosphere from a better understanding and prediction of a plant's immediate environment will help assess plant-microbe interplay, improve the productivity of plant ecosystems and improve plant response to adverse soil conditions. Here we characterized functional genes of the microbial community of maize rhizosphere using a culture-independent method. RESULTS: Our metadata showed microbial genes involved in nitrogen fixation, phosphate solubilization, quorum sensing molecules, trehalose, siderophore production, phenazine biosynthesis protein, daunorubicin resistance, acetoin, 1-aminocyclopropane-1-carboxylate deaminase, 4-hydroxybenzoate, disease control and stress-reducing genes (superoxidase dismutase, catalase, peroxidase, etc.). ß-Diversity showed that there is a highly significant difference between most of the genes mined from rhizosphere soil samples and surrounding soils. CONCLUSIONS: The high relative abundance of stress-reducing genes mined from this study showed that the sampling sites harbor not only important plant-beneficial organisms but also a hotspot for developing bio-fertilizers. Nevertheless, since most of these organisms are unculturable, mapping cultivation strategies for their growth could make them readily available as bio-inoculants and possible biotechnological applications in the future. © 2020 Society of Chemical Industry.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Microbiología del Suelo , Zea mays/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Metagenómica , Microbiota , Fijación del Nitrógeno , Rizosfera , Suelo/química , Zea mays/microbiología
16.
Planta ; 252(4): 61, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32965531

RESUMEN

The roles of plant roots are not merely limited to the provision of mechanical support, nutrients and water, but also include more specific roles, such as the capacity to secrete diverse chemical substances. These metabolites are actively secreted in the near root and play specific and significant functions in plant defense and communication. In this review, we detail the various preventive roles of these powerful substances in the rhizosphere with a perspective as to how plants recruit microbes as a preventive measure against other pathogenic microbes, also, briefly about how the rhizosphere can repel insect pests, and how these chemical substances alter microbial dynamics and enhance symbiotic relationships. We also highlight the need for more research in this area to detail the mode of action and quantification of these compounds in the environment and their roles in some important biological processes in microorganisms and plants.


Asunto(s)
Raíces de Plantas , Rizosfera , Raíces de Plantas/microbiología , Plantas/química , Plantas/microbiología , Plantas/parasitología , Microbiología del Suelo , Simbiosis
17.
Arch Microbiol ; 202(10): 2697-2709, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32725600

RESUMEN

The study focuses on analysis of the compositional and diversity of bacteria in termite mound soils in comparison with the surrounding soils to verify the assertion that the high nutrient concentrations in termite mound soils influence a complex diversity of microorganisms. Here, whole DNA was extracted from soil samples collected from termite mounds and their surrounding soils which were 10 m apart and subsequently, sequenced using shotgun metagenomic approach. Our findings showed that both environments have several soil bacterial phyla in common. However, Proteobacteria and Actinobacteria significantly dominated the termite mound soils and the surrounding soils, respectively, with Tenericutes peculiar to only the termite mound soils. Furthermore, Bergeyella, Gloeothece, Thalassospira, and Glaciecola genera were exclusively identified in the termite mound soil samples. Diversity analysis showed that bacterial composition was different among the four sites (phyla level). This study also revealed a lot of unclassified groups of bacteria and this could point to the presence of potentially novel species. The differences observed in the bacterial structure and diversity from this study may be ascribed to variances in the physicochemical nature existing between the two environments. Mapping out schemes to culture these unclassified groups of bacteria discovered from this study would possibly set the platform for the discovery of novel bacteria for biotechnological applications.


Asunto(s)
Actinobacteria/aislamiento & purificación , Isópteros/microbiología , Proteobacteria/aislamiento & purificación , Tenericutes/aislamiento & purificación , Actinobacteria/clasificación , Actinobacteria/genética , Animales , Genoma Bacteriano/genética , Metagenoma/genética , Nutrientes , Proteobacteria/clasificación , Proteobacteria/genética , Suelo/química , Microbiología del Suelo , Tenericutes/clasificación , Tenericutes/genética , Secuenciación Completa del Genoma
18.
Antonie Van Leeuwenhoek ; 113(11): 1559-1571, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32803452

RESUMEN

This study investigated the diversity, structure and nutrient pathways of the root-associated bacterial endophytes of maize plant cultivated using different fertilizers to verify the claim that inorganic fertilizers have some toxic effects on plant microbiome and not are ecofriendly. Whole DNA was extracted from the roots of maize plants cultivated with organic fertilizer, inorganic fertilizer and maize planted without any fertilizer at different planting sites in an experimental field and sequenced using shotgun metagenomics. Our results using the Subsystem database revealed a total of 28 phyla and different nutrient pathways in all the samples. The major phyla observed were Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, Tenericutes, Planctomycetes, Cyanobacteria, and Chlorobi. Bacteroidetes dominated maize from organic fertilizer sites, Firmicutes dominated the no fertilizers site while Proteobacteria dominated Inorganic fertilizer. The diversity analysis showed that the abundance of endophytic bacteria in all the sites is in the order organic fertilizer (FK) > no fertilizer (CK) > inorganic fertilizer (NK). Furthermore, the major nutrient cycling pathways identified are linked with nitrogen and phosphorus metabolism which were higher in FK samples. Going by the results obtained, this study suggests that organic fertilizer could be a boost to sustainable agricultural practices and should be encouraged. Also, a lot of novel endophytic bacteria groups were identified in maize. Mapping out strategies to isolate and purify this novel endophytic bacteria could help in promoting sustainable agriculture alongside biotechnological applications in future.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Endófitos/genética , Endófitos/metabolismo , Metagenómica , Zea mays/microbiología , Fertilizantes/análisis , Nutrientes , Suelo , Microbiología del Suelo
19.
World J Microbiol Biotechnol ; 36(9): 133, 2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772189

RESUMEN

Crop production in arid and semi-arid regions of the world is limited by several abiotic factors, including water stress, temperature extremes, low soil fertility, high soil pH, low soil water-holding capacity, and low soil organic matter. Moreover, arid and semi-arid areas experience low levels of rainfall with high spatial and temporal variability. Also, the indiscriminate use of chemicals, a practice that characterizes current agricultural practice, promotes crop and soil pollution potentially resulting in serious human health and environmental hazards. A reliable and sustainable alternative to current farming practice is, therefore, a necessity. One such option includes the use of plant growth-promoting microbes that can help to ameliorate some of the adverse effects of these multiple stresses. In this regard, archaea, functional components of the plant microbiome that are found both in the rhizosphere and the endosphere may contribute to the promotion of plant growth. Archaea can survive in extreme habitats such as areas with high temperatures and hypersaline water. No cases of archaea pathogenicity towards plants have been reported. Archaea appear to have the potential to promote plant growth, improve nutrient supply and protect plants against various abiotic stresses. A better understanding of recent developments in archaea functional diversity, plant colonizing ability, and modes of action could facilitate their eventual usage as reliable components of sustainable agricultural systems. The research discussed herein, therefore, addresses the potential role of archaea to improve sustainable crop production in arid and semi-arid areas.


Asunto(s)
Archaea/fisiología , Desarrollo de la Planta , Plantas/microbiología , Agricultura , Archaea/clasificación , Producción de Cultivos , Microbiota , Raíces de Plantas/microbiología , Microbiología del Suelo
20.
Appl Microbiol Biotechnol ; 103(3): 1179-1188, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30594952

RESUMEN

With the impending increase of the world population by 2050, more activities have been directed toward the improvement of crop yield and a safe environment. The need for chemical-free agricultural practices is becoming eminent due to the effects of these chemicals on the environment and human health. Actinomycetes constitute a significant percentage of the soil microbial community. The Streptomyces genus, which is the most abundant and arguably the most important actinomycetes, is a good source of bioactive compounds, antibiotics, and extracellular enzymes. These genera have shown over time great potential in improving the future of agriculture. This review highlights and buttresses the agricultural importance of Streptomyces through its biocontrol and plant growth-promoting activities. These activities are highlighted and discussed in this review. Some biocontrol products from this genus are already being marketed while work is still ongoing on this productive genus. Compared to more focus on its biocontrol ability, less work has been done on it as a biofertilizer until recently. This genus is as efficient as a biofertilizer as it is as a biocontrol.


Asunto(s)
Producción de Cultivos , Desarrollo de la Planta/fisiología , Plantas/microbiología , Streptomyces/metabolismo , Agentes de Control Biológico/metabolismo , Fertilizantes/microbiología , Streptomyces/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA