Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinspir Biomim ; 17(3)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35073538

RESUMEN

Biological soft interfaces often exhibit complex microscale interlocking geometries to ensure sturdy and flexible connections. If needed, the interlocking can rapidly be released on demand leading to an abrupt decrease of interfacial adhesion. Here, inspired by lizard tail autotomy where such apparently tunable interfacial fracture behavior can be observed, we hypothesized an interlocking mechanism between the tail and body based on the muscle-actuated mushroom-shaped microinterlocks along the fracture planes. To mimic the fracture behavior of the lizard tail, we developed a soft bilayer patch that consisted of a dense array of soft hemispherical microstructures in the upper layer acting as mechanical interlocks with the counter body part. The bottom control layer contained a microchannel that allowed to deflect the upper layer when applying the negative pressure, thus mimicking muscle contraction. In the microinterlocked condition, the biomimetic tail demonstrated a 2.7-fold and a three-fold increase in adhesion strength and toughness, respectively, compared to the pneumatically released microinterlocks. Furthermore, as per the computational analysis, the subsurface microchannel in the control layer enabled augmented adhesion by rendering the interface more compliant as a dissipative matrix, decreasing contact opening and strain energy dissipation by 50%. The contrasting features between the microinterlocked and released cases demonstrated a highly tunable adhesion of our biomimetic soft patch. The potential applications of our study are expected in soft robotics and prosthetics.


Asunto(s)
Lagartos , Animales , Biomimética , Lagartos/fisiología , Contracción Muscular , Cola (estructura animal)/fisiología
2.
Science ; 375(6582): 770-774, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175822

RESUMEN

Lizard tail autotomy is an antipredator strategy consisting of sturdy attachment at regular times but quick detachment during need. We propose a biomimetic fracture model of lizard tail autotomy using multiscale hierarchical structures. The structures consist of uniformly distributed micropillars with nanoporous tops, which recapitulate the high-density mushroom-shaped microstructures found on the lizard tail's muscle fracture plane. The biomimetic experiments showed adhesion enhancement when combining nanoporous interfacial surfaces with flexible micropillars in tensile and peel modes. The fracture modeling identified micro- and nanostructure-based toughening mechanisms as the critical factor. Under wet conditions, capillarity-assisted energy dissipation pertaining to liquid-filled microgaps and nanopores further increased the adhesion performance. This research presents insights on lizard tail autotomy and provides new biomimetic ideas to solve adhesion problems.


Asunto(s)
Conducta Animal , Biomimética , Lagartos/fisiología , Modelos Biológicos , Cola (estructura animal)/fisiología , Adhesividad , Animales , Fenómenos Biofísicos , Dimetilpolisiloxanos , Lagartos/anatomía & histología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Regeneración , Cola (estructura animal)/anatomía & histología
3.
Phys Rev E ; 102(1-1): 012801, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32794903

RESUMEN

We examine the underlying fracture mechanics of the human skin dermal-epidermal layer's microinterlocks using a physics-based cohesive zone finite-element model. Using microfabrication techniques, we fabricated highly dense arrays of spherical microstructures of radius ≈50µm without and with undercuts, which occur in an open spherical cavity whose centroid lies below the microstructure surface to create microinterlocks in polydimethylsiloxane layers. From experimental peel tests, we find that the maximum density microinterlocks without and with undercuts enable the respective ≈4-fold and ≈5-fold increase in adhesion strength as compared to the plain layers. Critical visualization of the single microinterlock fracture from the cohesive zone model reveals a contact interaction-based phenomena where the primary propagating crack is arrested and the secondary crack is initiated in the microinterlocked area. Strain energy energetics confirmed significantly lower strain energy dissipation for the microinterlock with the undercut as compared to its nonundercut counterpart. These phenomena are completely absent in a plain interface fracture where the fracture propagates catastrophically without any arrests. These events confirm the difference in the experimental results corroborated by the Cook-Gordon mechanism. The findings from the cohesive zone simulation provide deeper insights into soft microinterlock fracture mechanics that could prominently help in the rational designing of sutureless skin grafts and electronic skin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA