Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(21): E4261-E4270, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484008

RESUMEN

The myelination of axons in peripheral nerves requires precisely coordinated proliferation and differentiation of Schwann cells (SCs). We found that the activity of the mechanistic target of rapamycin complex 1 (mTORC1), a key signaling hub for the regulation of cellular growth and proliferation, is progressively extinguished as SCs differentiate during nerve development. To study the effects of different levels of sustained mTORC1 hyperactivity in the SC lineage, we disrupted negative regulators of mTORC1, including TSC2 or TSC1, in developing SCs of mutant mice. Surprisingly, the phenotypes ranged from arrested myelination in nerve development to focal hypermyelination in adulthood, depending on the level and timing of mTORC1 hyperactivity. For example, mice lacking TSC2 in developing SCs displayed hyperproliferation of undifferentiated SCs incompatible with normal myelination. However, these defects and myelination could be rescued by pharmacological mTORC1 inhibition. The subsequent reconstitution of SC mTORC1 hyperactivity in adult animals resulted in focal hypermyelination. Together our data suggest a model in which high mTORC1 activity promotes proliferation of immature SCs and antagonizes SC differentiation during nerve development. Down-regulation of mTORC1 activity is required for terminal SC differentiation and subsequent initiation of myelination. In distinction to this developmental role, excessive SC mTORC1 activity stimulates myelin growth, even overgrowth, in adulthood. Thus, our work delineates two distinct functions of mTORC1 in the SC lineage essential for proper nerve development and myelination. Moreover, our studies show that SCs retain their plasticity to myelinate and remodel myelin via mTORC1 throughout life.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Vaina de Mielina/metabolismo , Células de Schwann/citología , Sirolimus/farmacología , Proteínas Supresoras de Tumor/genética , Animales , Axones/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular , Plasticidad de la Célula/genética , Proliferación Celular/genética , Eliminación de Gen , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
2.
Neurobiol Dis ; 77: 13-25, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25726747

RESUMEN

Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/deficiencia , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Regeneración Nerviosa/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Animales , Proteínas de Unión al Calcio , Células Cultivadas , Quelantes/farmacología , Citocalasina D/farmacología , Citoesqueleto/metabolismo , Embrión de Mamíferos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/citología , Péptidos y Proteínas de Señalización Intercelular/genética , MAP Quinasa Quinasa 4/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Nocodazol/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 109(52): E3696-705, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23188802

RESUMEN

Axons actively self-destruct following genetic, mechanical, metabolic, and toxic insults, but the mechanism of axonal degeneration is poorly understood. The JNK pathway promotes axonal degeneration shortly after axonal injury, hours before irreversible axon fragmentation ensues. Inhibition of JNK activity during this period delays axonal degeneration, but critical JNK substrates that facilitate axon degeneration are unknown. Here we show that superior cervical ganglion 10 (SCG10), an axonal JNK substrate, is lost rapidly from mouse dorsal root ganglion axons following axotomy. SCG10 loss precedes axon fragmentation and occurs selectively in the axon segments distal to transection that are destined to degenerate. Rapid SCG10 loss after injury requires JNK activity. The JNK phosphorylation sites on SCG10 are required for its rapid degradation, suggesting that direct JNK phosphorylation targets SCG10 for degradation. We present a mechanism for the selective loss of SCG10 distal to the injury site. In healthy axons, SCG10 undergoes rapid JNK-dependent degradation and is replenished by fast axonal transport. Injury blocks axonal transport and the delivery of SCG10, leading to the selective loss of the labile SCG10 distal to the injury site. SCG10 loss is functionally important: Knocking down SCG10 accelerates axon fragmentation, whereas experimentally maintaining SCG10 after injury promotes mitochondrial movement and delays axonal degeneration. Taken together, these data support the model that SCG10 is an axonal-maintenance factor whose loss is permissive for execution of the injury-induced axonal degeneration program.


Asunto(s)
Axones/enzimología , Axones/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Animales , Biomarcadores/metabolismo , Proteínas de Unión al Calcio , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Ratas , Estatmina
4.
Biochim Biophys Acta Bioenerg ; 1863(5): 148545, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339437

RESUMEN

Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Degeneración Walleriana , Axones/metabolismo , Axones/patología , Metabolismo Energético , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
5.
J Neurosci ; 30(40): 13291-304, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20926655

RESUMEN

Axon and synapse degeneration are common components of many neurodegenerative diseases, and their rescue is essential for effective neuroprotection. The chimeric Wallerian degeneration slow protein (Wld(S)) protects axons dose dependently, but its mechanism is still elusive. We recently showed that Wld(S) acts at a non-nuclear location and is present in axons. This and other recent reports support a model in which Wld(S) protects by extranuclear redistribution of its nuclear NMNAT1 portion. However, it remains unclear whether cytoplasmic NMNAT1 acts locally in axons and synapses or at a non-nuclear site within cell bodies. The potency of axon protection by non-nuclear NMNAT1 relative to Wld(S) also needs to be established in vivo. Because the N-terminal portion of Wld(S) (N70) localized to axons, we hypothesized that it mediates the trafficking of the NMNAT1 portion. To test this, we substituted N70 with an axonal targeting peptide derived from amyloid precursor protein, and fused this to NMNAT1 with disrupted nuclear targeting. In transgenic mice, this transformed NMNAT1 from a molecule unable to inhibit Wallerian degeneration, even at high expression levels, into a protein more potent than Wld(S), able to preserve injured axons for several weeks at undetectable expression levels. Preventing NMNAT1 axonal delivery abolished its protective effect. Axonally targeted NMNAT1 localized to vesicular structures, colocalizing with extranuclear Wld(S), and was cotransported at least partially with mitochondria. We conclude that axonal targeting of NMNAT activity is both necessary and sufficient to delay Wallerian degeneration, and that promoting axonal and synaptic delivery greatly enhances the effectiveness.


Asunto(s)
Transporte Axonal/genética , Axones/metabolismo , Fármacos Neuroprotectores/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Sinapsis/metabolismo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/fisiopatología , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Marcación de Gen/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Degeneración Walleriana/prevención & control
6.
J Neurosci ; 29(3): 653-68, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19158292

RESUMEN

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (Wld(S)) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that Wld(S) acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear Wld(S) significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native Wld(S) mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear Wld(S) for the first time in vivo, and higher axoplasmic levels in transgenic mice with Wld(S) redistribution. Cytoplasmic Wld(S) fractionated predominantly with mitochondria and microsomes. We conclude that Wld(S) can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.


Asunto(s)
Axones/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/fisiopatología , Degeneración Walleriana/patología , Degeneración Walleriana/prevención & control , Factores de Edad , Alanina/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Arginina/genética , Axones/metabolismo , Axones/ultraestructura , Línea Celular Transformada , Desnervación/métodos , Modelos Animales de Enfermedad , Electromiografía , Humanos , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Microsomas/metabolismo , Microsomas/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiopatología , Mutagénesis Sitio-Dirigida/métodos , Mutación , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Técnicas de Cultivo de Órganos , Nervios Periféricos/fisiopatología , Transporte de Proteínas/genética , Ratas , Fracciones Subcelulares/metabolismo , Transfección/métodos , Tubulina (Proteína)/metabolismo , Degeneración Walleriana/genética
7.
Brain ; 132(Pt 2): 402-16, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19059977

RESUMEN

Synapse loss precedes cell death in Alzheimer's disease, but the timing of axon degeneration relative to these events, and the causal relationships remain unclear. Axons become so severely dystrophic near amyloid plaques that their interruption, causing permanent loss of function, extensive synapse loss, and potentially cell death appears imminent. However, it remains unclear whether axons are truly interrupted at plaques and whether cell bodies fail to support their axons and dendrites. We traced TgCRND8 mouse axons longitudinally through, distal to, and proximal from dystrophic regions. The corresponding neurons not only survived but remained morphologically unaltered, indicating absence of axonal damage signalling or a failure to respond to it. Axons, no matter how dystrophic, remained continuous and initially morphologically normal outside the plaque region, reflecting support by metabolically active cell bodies and continued axonal transport. Immunochemical and ultrastructural studies showed dystrophic axons were tightly associated with disruption of presynaptic transmission machinery, suggesting local functional impairment. Thus, we rule out long-range degeneration axons or dendrites as major contributors to early synapse loss in this model, raising the prospect of a therapeutic window for functional rescue of individual neurons lasting months or even years after their axons become highly dystrophic. We propose that multi-focal pathology has an important role in the human disease in bringing about the switch from local, and potentially recoverable, synapse loss into permanent loss of neuronal processes and eventually their cell bodies.


Asunto(s)
Enfermedad de Alzheimer/patología , Axones/patología , Degeneración Nerviosa , Neuronas/patología , Placa Amiloide/patología , Animales , Cruzamiento , Supervivencia Celular , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Modelos Animales , Transmisión Sináptica
8.
Methods Mol Biol ; 2143: 97-110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524475

RESUMEN

Autonomous mechanisms of axon degeneration are frequently studied in vitro by mechanical axon injury of isolated sensory neurons. This has led to major advances in understanding the molecular pathways governing axon degeneration. However, this approach does not pay attention to potential glial mechanisms for the regulation of axon death. Here, I describe a straightforward protocol to seed purified rat Schwann cells on neuronal cultures in order to study the interaction between axons and these glia during axon degeneration.


Asunto(s)
Axones/fisiología , Técnicas de Cocultivo/métodos , Células de Schwann/citología , Células Receptoras Sensoriales/citología , Degeneración Walleriana/fisiopatología , Animales , Axotomía , Separación Celular/métodos , Células Cultivadas , Técnicas de Cocultivo/instrumentación , Ganglios Espinales/citología , Ganglios Espinales/embriología , Separación Inmunomagnética/métodos , Laminina , Ratones , Microscopía Fluorescente/métodos , Factor de Crecimiento Nervioso/farmacología , Polilisina , Ratas , Ratas Sprague-Dawley , Nervio Ciático/citología , Células Receptoras Sensoriales/efectos de los fármacos
9.
Nat Neurosci ; 23(10): 1215-1228, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32807950

RESUMEN

Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.


Asunto(s)
Axones/metabolismo , Axones/patología , Ganglios Espinales/metabolismo , Glucólisis , Degeneración Nerviosa/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Femenino , Ganglios Espinales/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células de Schwann/patología , Serina-Treonina Quinasas TOR/metabolismo
10.
Mol Cell Neurosci ; 38(3): 325-40, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18468455

RESUMEN

Wallerian degeneration slow (Wld(S)) mice express a chimeric protein that delays axonal degeneration. The N-terminal domain (N70), which is essential for axonal protection in vivo, binds valosin-containing protein (VCP) and targets both Wld(S) and VCP to discrete nuclear foci. We characterized the formation, composition and localization of these potentially important foci. Missense mutations show that the N-terminal sixteen residues (N16) of Wld(S) are essential for both VCP binding and targeting Wld(S) to nuclear foci. Removing N16 abolishes foci, and VCP binding sequences from ataxin-3 or HrdI restore them. In vitro, these puncta co-localize with proteasome subunits. In vivo, Wld(S) assumes a range of nuclear distribution patterns, including puncta, and its neuronal expression and intranuclear distribution is region-specific and varies between spontaneous and transgenic Wld(S) models. We conclude that VCP influences Wld(S) intracellular distribution, and thus potentially its function, by binding within the N70 domain required for axon protection.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Líquido Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/genética , Animales , Animales Modificados Genéticamente , Química Encefálica/genética , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citoplasma/química , Citoplasma/metabolismo , Células HeLa , Humanos , Líquido Intracelular/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Células PC12 , Unión Proteica/fisiología , Ratas , Proteína que Contiene Valosina , Degeneración Walleriana/genética , Degeneración Walleriana/metabolismo
11.
Eur J Neurosci ; 28(6): 1166-79, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18783366

RESUMEN

Glaucoma is a leading cause of blindness caused by progressive degeneration of retinal ganglion cells (RGCs) and their axons. The pathogenesis of glaucoma remains incompletely understood, but optic nerve (ON) axonal injury appears to be an important trigger of RGC axonal and cell body degeneration. Rat models are widely used in glaucoma research to explore pathogenic mechanisms and to test novel neuroprotective approaches. Here we investigated the mechanism of axon loss in glaucoma, studying axon degeneration in slow Wallerian degeneration (Wld(S)) rats after increasing intraocular pressure. Wld(S) delays degeneration of experimentally transected axons for several weeks, so it can provide genetic evidence for Wallerian-like degeneration in disease. As apoptosis is unaffected, Wld(S) also provides information on whether cell death results from axon degeneration or arises independently, an important question yet to be resolved in glaucoma. Having confirmed expression of Wld(S) protein, we found that Wld(S) delayed ON axonal degeneration in experimental rat glaucoma for at least 2 weeks, especially in proximal ON where wild-type axons are most severely affected. The duration of axonal protection is similar to that after ON transection and crush, suggesting that axonal degeneration in glaucoma follows a Wallerian-like mechanism. Axonal degeneration must be prevented for RGCs to remain functional, so pharmacologically mimicking and enhancing the protective mechanism of Wld(S) could offer an important route towards therapy. However, Wld(S) did not protect RGC bodies in glaucoma or after ON lesion, suggesting that combination treatments protecting both axons and cell bodies offer the best therapeutic prospects.


Asunto(s)
Axones/metabolismo , Axones/patología , Glaucoma , Proteínas del Tejido Nervioso/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Degeneración Walleriana , Animales , Animales Modificados Genéticamente , Axones/ultraestructura , Supervivencia Celular , Glaucoma/genética , Glaucoma/patología , Humanos , Rayos Láser , Proteínas del Tejido Nervioso/genética , Traumatismos del Nervio Óptico , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/citología , Degeneración Walleriana/genética , Degeneración Walleriana/patología
12.
Neural Regen Res ; 17(2): 304-306, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34269193
13.
Neural Regen Res ; 12(4): 518-524, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28553320

RESUMEN

Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

14.
Brain Res Bull ; 69(4): 465-74, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16624679

RESUMEN

G93A Cu/Zn superoxide dismutase (SOD1), a human mutant SOD1 associated with familial amyotrophic lateral sclerosis, increased the toxicity of the mitochondrial toxin rotenone in the NSC-34 motoneuronal cell line. G93ASOD1 cells died more than untransfected and wild-type SOD1 cells after 6 and 24h exposure to 12.5 microM rotenone. Biparametric flow cytometry showed that rotenone induced rapid hyperpolarization of mitochondrial membrane potential (deltapsi(m)) in all the cell lines, followed by depolarization, and then by cell death. However, G93ASOD1 mitochondria were significantly more likely to shift from a hyperpolarized to a depolarized condition, and within the still viable cell population there was a higher proportion with depolarized mitochondria, a condition that can be envisaged as a commitment to cell death. ATP, which is needed to prevent loss of deltapsi(m), decreased more rapidly and to a greater extent in rotenone-treated G93ASOD1 cells than in the untransfected and wtSOD1cells. In all the cell lines, 1h after rotenone exposure, mitochondrial hyperpolarization was accompanied by the formation of a comparable amount of reactive oxygen species. However, G93ASOD1 cells reached the highest reactive oxygen species level since their basal level was higher than in untransfected and wild-type SOD1 cells. Our findings indicate that the mutant protein G93ASOD1 enhances the vulnerability of motor neurons to rotenone by mechanism(s) involving oxidative stress and perturbed mitochondrial homeostasis. This suggests that motor neurons from individuals carrying the mutant G93ASOD1 are at greater risk of death after inhibition of the electron transport chain.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Neuronas Motoras/efectos de los fármacos , Plaguicidas/toxicidad , Rotenona/toxicidad , Superóxido Dismutasa/genética , Adenosina Trifosfato/biosíntesis , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Mutación , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1 , Transfección
15.
J Cell Biol ; 215(4): 437-440, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27872250

RESUMEN

The mechanisms by which axonal degeneration occurs, even in the presence of apparently normal myelin sheaths, remain unknown. In this issue, Yin et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201607099) study mutant mice in which proteolipid protein is replaced by the peripheral myelin protein P0 and describe a number of early axonal abnormalities, which together suggest that aberrant mitochondrial energy metabolism precedes axonal degeneration.


Asunto(s)
Axones/metabolismo , Metabolismo Energético , Vaina de Mielina/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Transporte Axonal , Ratones Mutantes , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Modelos Biológicos , Oligodendroglía/metabolismo
17.
Brain Res Mol Brain Res ; 140(1-2): 63-72, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16125275

RESUMEN

The motor neuron-like cell line NSC-34 has become a widely used in vitro model for motor neuron biology and pathology. We established a tetracycline-regulated gene expression system in this cell line by stably transfecting pTet-Off, which codifies for the tetracycline transactivator, the regulatory protein tTA. The monoclonal cell lines (NSC-34-tTA) were evaluated for the presence of functional tTA after transient transfection with pBI-EGFP, analyzing the expression of the reporter gene enhanced green fluorescent protein. We evaluated the regulation of tTA function with doxycycline using fluorescence microscopy and quantitative cytofluorimetric analysis on viable transfected cells. The best-regulated cell line (NSC-34-tTA40) had a 66.4-fold induction for the reporter gene fluorescence in comparison to NSC-34. Alpha-tubulin, GAP-43 and phosphorylated medium and heavy neurofilaments, proteins of importance for the motor neuronal phenotype, were evident in NSC-34-tTA40 by Western blot and immunocytochemistry; they were expressed similarly in NSC-34-tTA40 and in NSC-34. The cDNA of human Cu/Zn superoxide dismutase, a gene of interest for amyotrophic lateral sclerosis, was cloned into pBI-EGFP, downstream of the tetracycline-responsive bidirectional promoter. This plasmid was transiently transfected into NSC-34-tTA40, and the functionality of bidirectional transcription was verified by determining the expression of enhanced green fluorescent protein and of human Cu/Zn superoxide dismutase. Both proteins were regulated by doxycycline. This novel cell line, NSC-34 tTA40, that permits tetracycline-regulated gene expression may prove useful to unravel the mechanisms of motor neuron degeneration.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de la Neurona Motora/genética , Tetraciclina/farmacología , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Transfección
18.
Nat Neurosci ; 17(10): 1351-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25195104

RESUMEN

Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMP-activated protein kinase (AMPK) kinase pathway targets several downstream effectors, including mammalian target of rapamycin (mTOR), and is a key metabolic regulator implicated in metabolic diseases. We found through molecular, structural and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1 mutants was most dramatic in unmyelinated small sensory fibers, whereas motor axons were comparatively spared. LKB1 deletion in SCs led to abnormalities in nerve energy and lipid homeostasis and to increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy.


Asunto(s)
Axones/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células de Schwann/fisiología , Proteínas Quinasas Activadas por AMP , Animales , Células Cultivadas , Desoxiglucosa/metabolismo , Femenino , Técnicas In Vitro , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Mutación/genética , Proteína P0 de la Mielina/genética , Proteína Proteolipídica de la Mielina/genética , Unión Neuromuscular/citología , Neuronas/fisiología , Nervios Periféricos/citología , Nervios Periféricos/fisiología , Proteínas Serina-Treonina Quinasas/genética
19.
Cell Rep ; 3(5): 1422-9, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23665224

RESUMEN

Axon degeneration is an evolutionarily conserved process that drives the loss of damaged axons and is an early event in many neurological disorders, so it is important to identify the molecular constituents of this poorly understood mechanism. Here, we demonstrate that the Phr1 E3 ubiquitin ligase is a central component of this axon degeneration program. Loss of Phr1 results in prolonged survival of severed axons in both the peripheral and central nervous systems, as well as preservation of motor and sensory nerve terminals. Phr1 depletion increases the axonal level of the axon survival molecule nicotinamide mononucleotide adenyltransferase 2 (NMNAT2), and NMNAT2 is necessary for Phr1-dependent axon stability. The profound long-term protection of peripheral and central mammalian axons following Phr1 deletion suggests that pharmacological inhibition of Phr1 function may be an attractive therapeutic candidate for amelioration of axon loss in neurological disease.


Asunto(s)
Axones/fisiología , Proteínas Portadoras/metabolismo , Animales , Axones/ultraestructura , Proteínas Portadoras/genética , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Degeneración Nerviosa , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ubiquitina-Proteína Ligasas , Vincristina/farmacología
20.
J Neuropathol Exp Neurol ; 69(5): 455-72, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20418780

RESUMEN

Wallerian degeneration of the CNS is accompanied by axonal dystrophy or swelling. To understand the mechanisms by which swellings arise, we studied their spatiotemporal dynamics, ultrastructure, composition, and the conditions that affect their formation in vivo and ex vivo. In contrast to peripheral nerve axons, lesioned optic nerve (ON) axons in vivo developed focal swellings asynchronously within 6 hours, long before there is any axon fragmentation. Axons in ON, spinal cord dorsal column, and corpus callosum all showed marked gradients with more swellings in proximal regions of their distal stumps early after lesion. Time-lapse imaging of a validated ex vivo system showed that multiple focal swellings arise after around 1 hour close to the injury site, followed by anterograde wave-like progression on continuous ON axon stumps. Swellings were largely stable but occasionally seemed to fuse with neighboring swellings. Their ultrastructural appearances resembled disease-associated spheroids. Although accumulation of axonal markers suggested transport deficits, large accumulations of mitochondria were not observed. Early swelling formation was decreased in Wld gene-expressing rodents and by removing extracellular calcium. Several pharmacologic agents that inhibit axon loss in vitro and/or in vivo also prevented early formation of axonal spheroids in acute ON explants. Because axonal swellings are hallmarks of many neurodegenerative conditions, these data suggest that they are a manifestation of Wallerian-like degeneration in some cases. Thus, Wallerian-like degeneration may be a more common component mechanism in CNS diseases than previously thought.


Asunto(s)
Axones/patología , Sistema Nervioso Central/patología , Nervio Óptico/patología , Degeneración Walleriana/patología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Axones/ultraestructura , Axotomía/métodos , Calcimicina/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Ionóforos/farmacología , Proteínas Luminiscentes/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica de Transmisión/métodos , Mitocondrias/patología , Mitocondrias/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA