Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(31): e2311302, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38429242

RESUMEN

The release of nitrates into the environment leads to contaminated soil and water that poses a health risk to humans and animals. Due to the transition to renewable energy-based technologies, an electrochemical approach is an emerging option that can selectively produce valuable ammonia from nitrate sources. However, traditional metal-based electrocatalysts often suffer from low nitrate adsorption that reduces NH3 production rates. Here, a Ni-GaOOH-C/Ga electrocatalyst for electrochemical nitrate conversion into NH3 is synthesized via a low energy atmospheric-pressure plasma process that reduces CO2 into highly dispersed activated carbon on dispersed Ni─GaOOH particles produced from a liquid metal Ga─Ni alloy precursor. Nitrate conversion rates of up to 26.3 µg h-1 mg-1 cat are achieved with good stability of up to 20 h. Critically, the presence of carbon centers is central to improved performance where both Ni─C and NiO─C interfaces act as NO3- adsorption and reduction centers during the reaction. Density functional theory (DFT) calculations indicate that the NiO─C and Ni─C reaction sites reduce the Gibbs free energy required for NO3- reduction to NH3 compared to NiO and Ni. Importantly, catalysts without carbon centers do not produce NH3, emphasizing the unique effects of incorporating carbon nanoparticles into the electrocatalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA