Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916275

RESUMEN

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Asunto(s)
Artemisininas/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptores de GABA-A/metabolismo , Transducción de Señal , Animales , Arteméter , Artemisininas/administración & dosificación , Proteínas Portadoras/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Estabilidad Proteica/efectos de los fármacos , Ratas , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Pez Cebra , Ácido gamma-Aminobutírico/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(35): E8116-E8124, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108146

RESUMEN

Zeolite-templated carbons (ZTCs) comprise a relatively recent material class synthesized via the chemical vapor deposition of a carbon-containing precursor on a zeolite template, followed by the removal of the template. We have developed a theoretical framework to generate a ZTC model from any given zeolite structure, which we show can successfully predict the structure of known ZTCs. We use our method to generate a library of ZTCs from all known zeolites, to establish criteria for which zeolites can produce experimentally accessible ZTCs, and to identify over 10 ZTCs that have never before been synthesized. We show that ZTCs partition space into two disjoint labyrinths that can be described by a pair of interpenetrating nets. Since such a pair of nets also describes a triply periodic minimal surface (TPMS), our results establish the relationship between ZTCs and schwarzites-carbon materials with negative Gaussian curvature that resemble TPMSs-linking the research topics and demonstrating that schwarzites should no longer be thought of as purely hypothetical materials.

3.
J Am Chem Soc ; 142(21): 9752-9762, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32352795

RESUMEN

Visible-light-driven hydrogen (H2) production from water is a promising strategy to convert and store solar energy as chemical energy. Covalent organic frameworks (COFs) are front runners among different classes of organic photocatalysts. The photocatalytic activity of COFs depends on numerous factors such as the electronic band gap, crystallinity, surface area, exciton migration, stability of transient species, charge separation and transport, etc. However, it is challenging to fine tune all of these factors simultaneously to enhance the photocatalytic activity. Hence, in this report, an effort has been made to understand the interplay of these factors and identify the key factors for efficient photocatalytic H2 production through a structure-property-activity relationship. Careful molecular engineering allowed us to optimize all of the above plausible factors impacting the overall catalytic activities of a series of isoreticular COFs. The present study determines three prime factors: light absorption, charge carrier generation, and its transport, which influence the photocatalytic H2 production of COFs to a much greater extent than the other factors.

4.
Phys Chem Chem Phys ; 22(37): 21059-21067, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32936159

RESUMEN

Unlike many methods of chemical modification of Graphite Oxide (GO) reported during 1930-1960 and re-studied in much detail over the last decade, acetylation somehow escaped attention and remained almost completely unexplored. Acetylated Graphite Oxide (AcGO) was prepared using a reaction with acetic anhydride. Successful acetylation is evidenced by an increase in the average interlayer distance from d(001) = 7.8 Å in the precursor GO to 10 Å in AcGO. The amount of oxygen in AcGO significantly decreased compared to the precursor GO (C/O = 2.2), reflecting partial reduction of GO in the process of acetylation and resulting in a scarcely functionalized material with C/O = 6.2. A theoretical model of the complete acetylation of GO results in a non-porous close packed molecular structure with an interlayer distance of ∼10 Å, in good agreement with experiment. Remarkably, AcGO shows significant swelling despite the oxidation degree being comparable to that of reduced GO, which does not swell in polar solvents. Moreover, AcGO shows swelling in acetonitrile similar to that of the precursor GO but not in water, thus providing an example of selectivity in the sorption of common polar solvents. The low oxidation degree combined with selective swelling properties makes AcGO a promising material for membrane applications.

5.
Angew Chem Int Ed Engl ; 59(3): 1087-1092, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31553513

RESUMEN

COF-1 has a structure with rigid 2D layers composed of benzene and B3 O3 rings and weak van der Waals bonding between the layers. The as-synthesized COF-1 structure contains pores occupied by solvent molecules. A high surface area empty-pore structure is obtained after vacuum annealing. High-pressure XRD and Raman experiments with mesitylene-filled (COF-1-M) and empty-pore COF-1 demonstrate partial amorphization and collapse of the framework structure above 12-15 GPa. The ambient pressure structure of COF-1-M can be reversibly recovered after compression up to 10-15 GPa. Remarkable stability of highly porous COF-1 structure at pressures at least up to 10 GPa is found even for the empty-pore structure. The bulk modulus of the COF-1 structure (11.2(5) GPa) and linear incompressibilities (k[100] =111(5) GPa, k[001] =15.0(5) GPa) were evaluated from the analysis of XRD data and cross-checked against first-principles calculations.

6.
Pharmacol Res ; 131: 150-163, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29477480

RESUMEN

Evodiae fructus is a widely used herbal drug in traditional Chinese medicine. Evodia extract was found to inhibit hERG channels. The aim of the current study was to identify hERG inhibitors in Evodia extract and to investigate their potential proarrhythmic effects. Dehydroevodiamine (DHE) and hortiamine were identified as IKr (rapid delayed rectifier current) inhibitors in Evodia extract by HPLC-microfractionation and subsequent patch clamp studies on human embryonic kidney cells. DHE and hortiamine inhibited IKr with IC50s of 253.2±26.3nM and 144.8±35.1nM, respectively. In dog ventricular cardiomyocytes, DHE dose-dependently prolonged the action potential duration (APD). Early afterdepolarizations (EADs) were seen in 14, 67, 100, and 67% of cells after 0.01, 0.1, 1 and 10µM DHE, respectively. The proarrhythmic potential of DHE was evaluated in 8 anesthetized rabbits and in 8 chronic atrioventricular block (cAVB) dogs. In rabbits, DHE increased the QT interval significantly by 12±10% (0.05mg/kg/5min) and 60±26% (0.5mg/kg/5min), and induced Torsade de Pointes arrhythmias (TdP, 0.5mg/kg/5min) in 2 rabbits. In cAVB dogs, 0.33mg/kg/5min DHE increased QT duration by 48±10% (P<0.05*) and induced TdP in 2/4 dogs. A higher dose did not induce TdP. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), methanolic extracts of Evodia, DHE and hortiamine dose-dependently prolonged APD. At 3µM DHE and hortiamine induced EADs. hERG inhibition at submicromolar concentrations, APD prolongation and EADs in hiPSC-CMs and dose-dependent proarrhythmic effects of DHE at micromolar plasma concentrations in cAVB dogs should increase awareness regarding proarrhythmic effects of widely used Evodia extracts.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Alcaloides/efectos adversos , Arritmias Cardíacas/inducido químicamente , Medicamentos Herbarios Chinos/efectos adversos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Evodia , Alcaloides/química , Alcaloides/farmacología , Animales , Arritmias Cardíacas/metabolismo , Perros , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Canales de Potasio Éter-A-Go-Go/metabolismo , Evodia/química , Femenino , Células HEK293 , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Conejos , Torsades de Pointes/inducido químicamente , Torsades de Pointes/metabolismo , Xenopus
7.
Angew Chem Int Ed Engl ; 57(42): 13780-13783, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30160076

RESUMEN

A new mesoporous metal-organic framework (MOF; DUT-60) was conceptually designed in silico using Zn4 O6+ nodes, ditopic and tritopic linkers to explore the stability limits of framework architectures with ultrahigh porosity. The robust ith-d topology of DUT-60 provides an average bulk and shear modulus (4.97 GPa and 0.50 GPa, respectively) for this ultra-porous framework, a key prerequisite to suppress pore collapse during desolvation. Subsequently, a cluster precursor approach, resulting in minimal side product formation in the solvothermal synthesis, was used to produce DUT-60, a new crystalline framework with the highest recorded accessible pore volume (5.02 cm3 g-1 ) surpassing all known crystalline framework materials.

8.
Inorg Chem ; 54(20): 10073-80, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26447991

RESUMEN

In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 Å). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat of adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 (R = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects.

9.
Bioorg Med Chem ; 23(20): 6757-62, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26410663

RESUMEN

In traditional Asian medicinal systems, preparations of the root and stem bark of Magnolia species are widely used to treat anxiety and other nervous disturbances. The biphenyl-type neolignan honokiol together with its isomer magnolol are the main constituents of Magnolia bark extracts. We have previously identified a nitrogen-containing honokiol derivative (3-acetylamino-4'-O-methylhonokiol, AMH) as a high efficient modulator of GABAA receptors. Here we further elucidate the structure-activity relation of a series of nitrogenated biphenyl-neolignan derivatives by analysing allosteric modulation and agonistic effects on α1ß2γ2S GABAA receptors. The strongest IGABA enhancement was induced by compound 5 (3-acetamido-4'-ethoxy-3',5-dipropylbiphenyl-2-ol, Emax: 123.4±9.4% of IGABA-max) and 6 (5'-amino-2-ethoxy-3',5-dipropylbiphenyl-4'-ol, Emax: 117.7±13.5% of IGABA-max). Compound 5 displayed, however, a significantly higher potency (EC50=1.8±1.1 µM) than compound 6 (EC50=20.4±4.3 µM). Honokiol, AMH and four of the derivatives induced significant inward currents in the absence of GABA. Strong partial agonists were honokiol (inducing 78±6% of IGABA-max), AMH (63±6%), 5'-amino-2-O-methylhonokiol (1) (59±1%) and 2-methoxy-5'-nitro-3',5-dipropylbiphenyl-4'-ol (3) (52±1%). 3-N-Acetylamino-4'-ethoxy-3',5-dipropyl-biphenyl-4'-ol (5) and 3-amino-4'-ethoxy-3',5-dipropyl-biphenyl-4'-ol (7) were less efficacious but even more potent (5: EC50=6.9±1.0 µM; 7: EC50=33.2±5.1 µM) than the full agonist GABA.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Agonismo Parcial de Drogas , Agonistas de Receptores de GABA-A/farmacología , Lignanos/farmacología , Nitrógeno/química , Receptores de GABA-A/metabolismo , Animales , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Relación Dosis-Respuesta a Droga , Femenino , Agonistas de Receptores de GABA-A/síntesis química , Agonistas de Receptores de GABA-A/química , Lignanos/síntesis química , Lignanos/química , Magnolia/química , Estructura Molecular , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Relación Estructura-Actividad , Xenopus laevis
10.
Phys Chem Chem Phys ; 17(2): 1332-8, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25425171

RESUMEN

We present a comprehensive computational study of sp(3)-carbon allotropes based on the topologies proposed for zeolites. From ≈600,000 zeolite nets we identified six new allotropes, lying by at most 0.12 eV per atom above diamond. The analysis of cages in the allotropes has revealed close structural relations to diamond and lonsdaleite phases. Besides the energetic and mechanical stability of new allotropes, three of them show band gaps by ca. 1 eV larger than that of diamond, and therefore represent an interesting technological target as hard and transparent materials. A structural relation of new allotropes to continuous random networks is pointed out and possible engineering from diamond thin films and graphene is suggested.

11.
J Chem Inf Model ; 54(10): 2887-901, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25148533

RESUMEN

The goal of this study was to design, experimentally validate, and apply a virtual screening workflow to identify novel hERG channel blockers. The hERG channel is an important antitarget in drug development since cardiotoxic risks remain as a major cause of attrition. A ligand-based pharmacophore model collection was developed and theoretically validated. The seven most complementary and suitable models were used for virtual screening of in-house and commercially available compound libraries. From the hit lists, 50 compounds were selected for experimental validation through bioactivity assessment using patch clamp techniques. Twenty compounds inhibited hERG channels expressed in HEK 293 cells with IC50 values ranging from 0.13 to 2.77 µM, attesting to the suitability of the models as cardiotoxicity prediction tools in a preclinical stage.


Asunto(s)
Cardiotónicos/química , Canales de Potasio Éter-A-Go-Go/química , Bloqueadores de los Canales de Potasio/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Cardiotónicos/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Expresión Génica , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Potenciales de la Membrana/efectos de los fármacos , Conformación Molecular , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Interfaz Usuario-Computador
12.
Planta Med ; 80(12): 1045-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25089737

RESUMEN

Inhibition of the human ether-a-go-go-related gene channel is the single most important risk factor leading to acquired long QT syndrome. Drug-induced QT prolongation can cause severe cardiac complications, including arrhythmia, and is thus a liability in drug development. Considering the importance of the human ether-a-go-go-related gene channel as an antitarget and the daily intake of plant-derived foods and herbal products, surprisingly few natural products have been tested for channel blocking properties. In an assessment of possible human ether-a-go-go-related gene liabilities, a selection of widely used herbal medicines and edible plants (vegetables, fruits, and spices) was screened by means of a functional two-microelectrode voltage-clamp assay with Xenopus oocytes. The human ether-a-go-go-related gene channel blocking activity of selected extracts was investigated with the aid of a high-performance liquid chromatography-based profiling approach, and attributed to tannins and alkaloids. Major European medicinal plants and frequently consumed food plants were found to have a low risk for human ether-a-go-go-related gene toxicity.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Sistema de Conducción Cardíaco/anomalías , Extractos Vegetales/farmacología , Plantas Comestibles/química , Plantas Medicinales/química , Bloqueadores de los Canales de Potasio/farmacología , Alcaloides/efectos adversos , Alcaloides/farmacología , Animales , Productos Biológicos , Síndrome de Brugada , Trastorno del Sistema de Conducción Cardíaco , Medicina de Hierbas , Humanos , Oocitos , Extractos Vegetales/efectos adversos , Bloqueadores de los Canales de Potasio/efectos adversos , Taninos/efectos adversos , Taninos/farmacología , Xenopus
13.
Planta Med ; 80(8-9): 740-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24963621

RESUMEN

Inhibition of the cardiac human ether-a-go-go-related gene channel is a problematic off-target pharmacological activity and, hence, a major safety liability in clinical practice. Several non-cardiac drugs have been restricted in their use, or even removed from the market due to this potentially fatal adverse effect. Comparatively little is known about the human ether-a-go-go-related gene inhibitory potential of plant-derived compounds. In the course of an ongoing human ether-a-go-go-related gene in vitro study, a total of 32 structurally diverse alkaloids of plant origin as well as two semi-synthetically obtained protoberberine derivatives were screened by means of an automated Xenopus oocyte assay. Protopine, (+)-bulbocapnine, (+)-N-methyllaurotetanine, (+)-boldine, (+)-chelidonine, (+)-corynoline, reserpine, and yohimbine reduced the human ether-a-go-go-related gene current by ≥ 50% at 100 µM, and were submitted to concentration-response experiments. Our data show that some widely occurring plant-derived alkaloids carry a potential risk for human ether-a-go-go-related gene toxicity.


Asunto(s)
Alcaloides/farmacología , Alcaloides de Berberina/farmacología , Productos Biológicos/farmacología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Humanos , Concentración 50 Inhibidora , Oocitos , Técnicas de Placa-Clamp , Xenopus laevis
14.
Toxicol Rep ; 10: 589-599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213814

RESUMEN

Guidelines for preclinical drug development reduce the occurrence of arrhythmia-related side effects. Besides ample evidence for the presence of arrhythmogenic substances in plants, there is no consensus on a research strategy for the evaluation of proarrhythmic effects of herbal products. Here, we propose a cardiac safety assay for the detection of proarrhythmic effects of plant extracts based on the experimental approaches described in the Comprehensive In vitro Proarrhythmia Assay (CiPA). Microelectrode array studies (MEAs) and voltage sensing optical technique on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were combined with ionic current measurements in mammalian cell lines, In-silico simulations of cardiac action potentials (APs) and statistic regression analysis. Proarrhythmic effects of 12 Evodia preparations, containing different amounts of the hERG inhibitors dehydroevodiamine (DHE) and hortiamine were analysed. Extracts produced different prolongation of the AP, occurrence of early after depolarisations and triangulation of the AP in hiPSC-CMs depending on the contents of the hERG inhibitors. DHE and hortiamine dose-dependently prolonged the field potential duration in hiPSC-CMs studied with MEAs. In-silico simulations of ventricular AP support a scenario where proarrhythmic effects of Evodia extracts are predominantly caused by the content of the selective hERG inhibitors. Statistic regression analysis revealed a high torsadogenic risk for both compounds that was comparable to drugs assigned to the high-risk category in a CiPA study.

15.
Adv Mater ; 35(2): e2207130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36305045

RESUMEN

Mesocrystals are a class of nanostructured material, where a multiple-length-scale structure is a prerequisite of many interesting phenomena. Resolving the mesocrystal structure is quite challenging due to their structuration on different length scales. The combination of small- and wide-angle X-ray scattering (SAXS and WAXS) techniques offers the possibility of non-destructively probing mesocrystalline structures simultaneously, over multiple length scales to reveal their microscopic structure. This work describes how high dynamical range of modern detectors sheds light on the weak features of scattering, significantly increasing the information content. The detailed analysis of X-ray diffraction (XRD) from the magnetite mesocrystals with different particle sizes and shapes is described, in tandem with electron microscopy. The revealed features provide valuable input to the models of mesocrystal growth and the choice of structural motif; the impact on magnetic properties is discussed.

16.
Chemistry ; 18(37): 11630-40, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22865659

RESUMEN

We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1-4, IFP = imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R = Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0-1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and (1)H MAS and (13)C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345-400 °C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO(2) was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH(4) (at 298 K), CO(2) (at 298 K) and H(2) (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO(2) is physisorbed on IFP-1-4 under dry conditions and that both CO(2) and H(2)O are physisorbed on IFP-1 under moist conditions.


Asunto(s)
Amidas/química , Imidazoles/química , Imidoésteres/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Zinc/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Porosidad , Propiedades de Superficie
17.
Planta Med ; 78(5): 440-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22294264

RESUMEN

EtOAc extracts from two batches of Morus alba root bark (Sang bai pi) potentiated γ-aminobutyric acid (GABA)-induced chloride influx in Xenopus oocytes, which transiently expressed GABA (A) receptors of the subunit composition α1ß2γ(2S). With the aid of HPLC-based activity profiling of the extract from the first batch, activity was traced to a peak subsequently identified as sanggenon G (3). The second batch had a different phytochemical profile, and HPLC-based activity profiling led to the identification of sanggenon C (4) and a stereoisomer of sanggenon D (2) as positive GABA (A) receptor modulators. The structurally related compound kuwanon L (1) was inactive. The sanggenons represent a new scaffold of positive GABA (A) receptor modulators.


Asunto(s)
Benzofuranos/farmacología , Cromonas/farmacología , Medicamentos Herbarios Chinos/farmacología , Moduladores del GABA/farmacología , Morus/química , Receptores de GABA-A/efectos de los fármacos , Animales , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Cromonas/química , Cromonas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Moduladores del GABA/química , Moduladores del GABA/aislamiento & purificación , Medicina Tradicional China , Estructura Molecular , Oocitos , Corteza de la Planta/química , Raíces de Plantas/química , Plantas Medicinales/química , Receptores de GABA-A/metabolismo , Xenopus laevis , Ácido gamma-Aminobutírico/farmacología
18.
Planta Med ; 78(5): 455-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22271080

RESUMEN

The gamma-amino butyric acid (GABA) type A (GABA(A)) receptor represents a crucial target for clinical agents in the treatment of anxiety and insomnia. Using the two-microelectrode voltage clamp technique on recombinant α1ß2γ(2S) GABA (A) receptors, effusol (1) and dehydroeffusol (2) were isolated in a bioactivity-guided approach from the pith of Juncus effusus L. Both compounds concentration-dependently enhanced GABA induced chloride currents (I(GABA)) by a maximum 188 ± 20 (1) and 239 ± 18 % (2), independent of the benzodiazepine (BZ) binding site. This activity on the GABA (A) receptor may explain the traditional use of J. effusus as a sedative and anxiolytic agent in Chinese medicine.


Asunto(s)
Ansiolíticos/farmacología , Medicamentos Herbarios Chinos/farmacología , Moduladores del GABA/farmacología , Hipnóticos y Sedantes/farmacología , Magnoliopsida/química , Receptores de GABA-A/efectos de los fármacos , Ansiolíticos/química , Ansiolíticos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Moduladores del GABA/química , Moduladores del GABA/aislamiento & purificación , Hipnóticos y Sedantes/química , Hipnóticos y Sedantes/aislamiento & purificación , Estructura Molecular , Técnicas de Placa-Clamp , Fenantrenos/química , Fenantrenos/aislamiento & purificación , Fenantrenos/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Receptores de GABA-A/metabolismo , Proteínas Recombinantes , Ácido gamma-Aminobutírico/metabolismo
19.
Nanoscale ; 14(30): 10940-10949, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35856786

RESUMEN

Swelling is a property of hydrophilic layered materials, which enables the penetration of polar solvents into an interlayer space with expansion of the lattice. Here we report an irreversible swelling transition, which occurs in MXenes immersed in excess dimethyl sulfoxide (DMSO) upon heating at 362-370 K with an increase in the interlayer distance by 4.2 Å. The temperature dependence of MXene Ti3C2Tx swelling in several polar solvents was studied using synchrotron radiation X-ray diffraction. MXenes immersed in excess DMSO showed a step-like increase in the interlayer distance from 17.73 Å at 280 K to 22.34 Å above ∼362 K. The phase transformation corresponds to a transition from the MXene structure with one intercalated DMSO layer into a two-layer solvate phase. The transformation is irreversible and the expanded phase remains after cooling back to room temperature. A similar phase transformation was observed also for MXene immersed in a 2 : 1 H2O : DMSO solvent ratio but at a lower temperature. The structure of MXene in the mixed solvent below 328 K was affected by the interstratification of differently hydrated (H2O)/solvated (DMSO) layers. Above the temperature of the transformation, the water was expelled from MXene interlayers and the formation of a pure two-layer DMSO-MXene phase was found. No changes in the swelling state were observed for MXenes immersed in DMSO or methanol at temperatures below ambient down to 173 K. Notably, MXenes do not swell in 1-alcohols larger than ethanol at ambient temperature. Changing the interlayer distance of MXenes by simple temperature cycling can be useful in membrane applications, e.g. when a larger interlayer distance is required for the penetration of ions and molecules into membranes. Swelling is also very important in electrode materials since it allows penetration of the electrolyte ions into the interlayers of the MXene structure.

20.
Chemistry ; 17(46): 13007-16, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21956516

RESUMEN

A combination of topological rules and quantum chemical calculations has facilitated the development of a rational metal-organic framework (MOF) synthetic strategy using the tritopic benzene-1,3,5-tribenzoate (btb) linker and a neutral cross-linker 4,4'-bipyridine (bipy). A series of new compounds, namely [M(2)(bipy)](3)(btb)(4) (DUT-23(M), M = Zn, Co, Cu, Ni), [Cu(2)(bisqui)(0.5)](3)(btb)(4) (DUT-24, bisqui = diethyl (R,S)-4,4'-biquinoline-3,3'-dicarboxylate), [Cu(2)(py)(1.5)(H(2)O)(0.5)](3)(btb)(4) (DUT-33, py = pyridine), and [Cu(2)(H(2)O)(2)](3)(btb)(4) (DUT-34), with high specific surface areas and pore volumes (up to 2.03 m(3) g(-1) for DUT-23(Co)) were synthesized. For DUT-23(Co), excess storage capacities were determined for methane (268 mg g(-1) at 100 bar and 298 K), hydrogen (74 mg g(-1) at 40 bar and 77 K), and n-butane (99 mg g(-1) at 293 K). DUT-34 is a non-cross-linked version of DUT-23 (non-interpenetrated pendant to MOF-14) that possesses open metal sites and can therefore be used as a catalyst. The accessibility of the pores in DUT-34 to potential substrate molecules was proven by liquid phase adsorption. By exchanging the N,N donor 4,4'-bipyridine with a substituted racemic biquinoline, DUT-24 was obtained. This opens a route to the synthesis of a chiral compound, which could be interesting for enantioselective separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA