Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Reprod ; 106(5): 835-853, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35084017

RESUMEN

Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Integrasas , Ratones , Embarazo , Reproducción/genética
2.
Mol Hum Reprod ; 27(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34524460

RESUMEN

Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.


Asunto(s)
Implantación del Embrión , Células Epiteliales/metabolismo , Receptor alfa de Estrógeno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Receptores de Kisspeptina-1/metabolismo , Transcripción Genética , Útero/metabolismo , Animales , Acuaporina 5/genética , Acuaporina 5/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Receptores de Kisspeptina-1/genética , Transducción de Señal , Factores de Tiempo
3.
Mol Hum Reprod ; 26(3): 154-166, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31977023

RESUMEN

The study investigated the effect of normal and supraphysiological (resulting from gonadotropin-dependent ovarian stimulation) levels of estradiol (E2) and progesterone (P4) on mouse uterine aquaporin gene/protein (Aqp/AQP) expression on Day 1 (D1) and D4 of pregnancy. The study also examined the effect of ovarian stimulation on uterine luminal closure and uterine receptivity on D4 of pregnancy and embryo implantation on D5 and D7 of pregnancy. These analyses revealed that the expression of Aqp3, Aqp4, Aqp5 and Aqp8 is induced by E2 while the expression of Aqp1 and Aqp11 is induced by P4. Additionally, P4 inhibits E2 induction of Aqp3 and Aqp4 expression while E2 inhibits Aqp1 and Aqp11 expression. Aqp9, however, is constitutively expressed. Ovarian stimulation disrupts Aqp3, Aqp5 and Aqp8 expression on D4 and AQP1, AQP3 and AQP5 spatial expression on both D1 and D4, strikingly so in the myometrium. Interestingly, while ovarian stimulation has no overt effect on luminal closure and uterine receptivity, it reduces implantation events, likely through a disruption in myometrial activity and embryo development. The wider implication of this study is that ovarian stimulation, which results in supraphysiological levels of E2 and P4 and changes (depending on the degree of stimulation) in the E2:P4 ratio, triggers abnormal expression of uterine AQP during pregnancy, and this is associated with implantation failure. These findings lead us to recognize that abnormal expression would also occur under any pathological state (such as endometriosis) that is associated with changes in the normal E2:P4 ratio. Thus, infertility among these patients might in part be linked to abnormal uterine AQP expression.


Asunto(s)
Acuaporinas/fisiología , Implantación del Embrión/efectos de los fármacos , Estradiol/fisiología , Inducción de la Ovulación , Progesterona/fisiología , Animales , Acuaporinas/biosíntesis , Acuaporinas/genética , Implantación del Embrión/fisiología , Transferencia de Embrión , Estradiol/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mifepristona/farmacología , Embarazo , Progesterona/farmacología , Seudoembarazo/metabolismo , Útero/fisiopatología , Agua/metabolismo
4.
FASEB J ; 33(8): 9374-9387, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31091422

RESUMEN

A nonreceptive uterus is a major cause of embryo implantation failure. This study examined the importance of the Gαq/11-coupled class of GPCRs as regulators of uterine receptivity. Mice were created lacking uterine Gαq and Gα11; as a result, signaling by all uterine Gαq/11-coupled receptors was disrupted. Reproductive profiling of the knockout females revealed that on d 4 of pregnancy, despite adequate serum progesterone (P4) levels and normal P4 receptor (PR) expression, there was no evidence of PR signaling. This resulted in the down-regulation of heart and neural crest derivatives expressed 2, Kruppel-like factor 15, and cyclin G1 and the subsequent persistent proliferation of the luminal epithelium. Aquaporin (Aqp) 11 was also potently down-regulated, whereas Aqp5/AQP5 expression persisted, resulting in the inhibition of luminal closure. Hypertrophy of the myometrial longitudinal muscle was also dramatically diminished, likely contributing to the observed implantation failure. Further analyses revealed that a major mechanism via which uterine Gαq/11 signaling induces PR signaling is through the transcriptional up-regulation of leucine-rich repeat-containing GPCR 4 (Lgr4). LGR4 was previously identified as a trigger of PR activation and signaling. Overall, this study establishes that Gαq/11 signaling, in a P4-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse, and disruption of such signaling results in P4 resistance.-de Oliveira, V., Schaefer, J., Calder, M., Lydon, J. P., DeMayo, F. J., Bhattacharya, M., Radovick, S., Babwah, A. V. Uterine Gαq/11 signaling, in a progesterone-dependent manner, critically regulates the acquisition of uterine receptivity in the female mouse.


Asunto(s)
Implantación del Embrión/fisiología , Progesterona/sangre , Receptores de Progesterona/metabolismo , Útero/metabolismo , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Implantación del Embrión/genética , Femenino , Expresión Génica , Ratones , Miometrio/metabolismo , Embarazo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Progesterona/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
5.
J Neurosci ; 35(37): 12903-16, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377475

RESUMEN

The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via ß-arrestin, and in mice lacking ß-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice. SIGNIFICANCE STATEMENT: The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/deficiencia , Hormona Liberadora de Gonadotropina/fisiología , Hipogonadismo/fisiopatología , Infertilidad Femenina/fisiopatología , Infertilidad Masculina/fisiopatología , Animales , Blastocisto/patología , Desarrollo Embrionario , Femenino , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Perfilación de la Expresión Génica , Genitales Femeninos/patología , Genitales Femeninos/fisiopatología , Genitales Masculinos/patología , Genitales Masculinos/fisiopatología , Hormonas Esteroides Gonadales/metabolismo , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Gonadotropinas Hipofisarias/metabolismo , Gonadotropinas Hipofisarias/farmacología , Hipogonadismo/genética , Hipogonadismo/patología , Sistema Hipotálamo-Hipofisario/fisiopatología , Hipotálamo/patología , Infertilidad Femenina/embriología , Infertilidad Femenina/genética , Infertilidad Masculina/embriología , Infertilidad Masculina/genética , Kisspeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Oligopéptidos/farmacología , Ovariectomía , Ovulación/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Fenotipo , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Espermatogénesis
6.
Reproduction ; 150(4): R121-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26183891

RESUMEN

Hypothalamic KISS1 and its derivatives (kisspeptins) are now well recognized as potent stimulators of GnRH secretion and thereby major regulators of the neuroendocrine-reproductive axis. Recent studies in the mouse strongly suggest that independent of the hypothalamus and pituitary, peripherally derived KISS1 also regulates fertility, and disruption of local KISS1 signaling in the ovary and uterus is sufficient to trigger infertility. With this increasing recognition that peripherally derived KISS1 regulates fertility, the first goal of this review is to critically discuss the data that have led to this conclusion, focusing on uterine- and placental-derived KISS1. Given that a significant amount of this data was generated in animals such as the mouse and rat, a second goal of this review is to identify and discuss the limitations of the animal data in the context of better understanding KISS1 as a regulator of human pregnancy. The growing evidence suggests that in both man and mouse, KISS1 plays an important role in regulating very early pregnancy events such as embryo implantation. However, as pregnancy advances, although it seems that KISS1 continues to play important roles in regulating human pregnancy, it might not do so in the mouse. This surprising functional dichotomy between human females and mice appears also to exist between women and a large number of animal species, including lower primates. These findings are of tremendous significance and will greatly shape how KISS1 will be developed as a therapeutic agent in augmenting the reproductive potential of both women and important livestock species.


Asunto(s)
Kisspeptinas/genética , Placenta/metabolismo , Útero/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Ratas
7.
Reprod Biol Endocrinol ; 13: 105, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26384646

RESUMEN

BACKGROUND: Expression of kisspeptin (protein) and Kiss1r (mRNA) was recently documented in the mouse uterus on D4 of pregnancy (the day of embryo implantation) suggesting that the uterine-based kisspeptin (KP)/kisspeptin receptor (KISS1R) signaling system regulates embryo implantation. Despite this important suggestion, it was never demonstrated that the uterus actually exhibits a functional KP/KISS1R signaling system on D4 of pregnancy. Thus, the goal of this study was to determine whether a functional KP/KISS1R signaling system exists in the mouse uterus on D4 of pregnancy. FINDINGS: Since kisspeptin/KISS1R signaling triggers the phosphorylation of the mitogen-activated protein kinases p38 and ERK1/2, through immunohistochemical analyses, we determined whether exogenously administered kisspeptin could trigger p38 and ERK1/2 phosphorylation in the uterus on D4 of pregnancy. The results clearly demonstrated that kisspeptin could and that its effects were mediated via KISS1R. Additionally, the robust kisspeptin-triggered response was observed in the pregnant uterus only. Finally, it was demonstrated that on D4 of pregnancy the Kiss1 null uterus expresses functional KISS1R molecules capable of mediating the effects of kisspeptin. CONCLUSIONS: These results lead us to conclude that on D4 of pregnancy, the mouse uterus expresses a functional KP/KISS1R signaling system strengthening the possibility that this signaling system regulates embryo implantation. These findings strengthen the rationale for determining whether such a functional system exists in the uterus of the human female and if so, what role it might play in human pregnancy.


Asunto(s)
Implantación del Embrión/fisiología , Kisspeptinas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Útero/fisiología , Animales , Femenino , Ratones , Ratones Noqueados , Embarazo , Receptores de Kisspeptina-1
8.
Neuroendocrinology ; 101(3): 193-210, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25765628

RESUMEN

Kisspeptin (KP) is now well recognized as a potent stimulator of gonadotropin-releasing hormone (GnRH) secretion and thereby a major regulator of the neuroendocrine-reproductive axis. KP signals via KISS1R, a G protein-coupled receptor (GPCR) that activates the G proteins Gαq/11. Modulation of the interaction of KP with KISS1R is therefore a potential new therapeutic target for stimulating (in infertility) or inhibiting (in hormone-dependent diseases) the reproductive hormone cascade. Major efforts are underway to target KISS1R in the treatment of sex steroid hormone-dependent disorders and to stimulate endogenous hormonal responses along the neuroendocrine axis as part of in vitro fertilization protocols. The development of analogs modulating KISS1R signaling will be aided by an understanding of the intracellular pathways and dynamics of KISS1R signaling under normal and pathological conditions. This review focuses on KISS1R recruitment of intracellular signaling (Gαq/11- and ß-arrestin-dependent) pathways that mediate GnRH secretion and the respective roles of rapid desensitization, internalization, and recycling of resensitized receptors in maintaining an active population of KISS1R at the cell surface to facilitate prolonged KP signaling. Additionally, this review summarizes and discusses the major findings of an array of studies examining the desensitization of KP signaling in man, domestic and laboratory animals. This discussion highlights the major effects of ligand efficacy and concentration and the physiological, developmental, and metabolic status of the organism on KP signaling. Finally, the potential for the utilization of KP and analogs in stimulating and inhibiting the reproductive hormone cascade as an alternative to targeting the downstream GnRH receptor is discussed.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Sistemas Neurosecretores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Arrestinas/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Humanos , Masculino , Neuronas/metabolismo , Proteolisis , Receptores de Kisspeptina-1 , beta-Arrestinas
9.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24676899

RESUMEN

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Asunto(s)
Colágeno/biosíntesis , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Microscopía Confocal , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Prolina/metabolismo , Animales , Carbocianinas/metabolismo , Células Cultivadas , Fibroblastos/patología , Fibrosis , Colorantes Fluorescentes/metabolismo , Humanos , Cinética , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Prolina/genética , Transfección
10.
Mol Reprod Dev ; 81(1): 42-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24273038

RESUMEN

During the first trimester of human pregnancy, cytotrophoblasts proliferate within the tips of the chorionic villi to form cell columns that anchor the placenta to the uterus. This migration coincides with a widespread change in the adhesion molecule repertoire of these trophoblasts. Kisspeptin and its receptor, KISS1R, are best known as potent triggers of gonadotropin-releasing hormone secretion. The kisspeptin/KISS1R signaling system is also highly expressed in the human placenta, where it was demonstrated to inhibit extra-villous trophoblast (EVT) migration and invasion in vitro. Here we show that kisspeptin, in a dose- and time-dependent manner, induces increased adhesion of human EVTs to type-I collagen, a major component of the human placenta. This increased adhesion was both rapid and transient, suggesting that it likely occurred through the activation of KISS1R secondary effectors such as PKC and ERK, which underwent rapid and transient kisspeptin-dependent activation in EVTs. We then showed that inhibition of both PKC and ERK1/2 attenuated the kisspeptin-dependent increase in EVT adhesion, suggesting that these molecules are key positive regulators of trophoblast adhesion. We therefore propose that kisspeptin/KISS1R signaling potentiates EVT adhesion to type-I collagen via "inside-out signaling." Furthermore, kisspeptin treatment increased mouse blastocyst adhesion to collagen I, suggesting that kisspeptin signaling is a key regulator of trophoblast function during implantation as well as early placentation.


Asunto(s)
Adhesión Celular/fisiología , Colágeno Tipo I/metabolismo , Kisspeptinas/metabolismo , Placenta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Trofoblastos/fisiología , Análisis de Varianza , Animales , Western Blotting , Cartilla de ADN/genética , Implantación del Embrión/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Microscopía Confocal , Embarazo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Receptores de Kisspeptina-1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Nat Rev Endocrinol ; 20(3): 149-167, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110672

RESUMEN

Infertility affects one in six couples, with in vitro fertilization (IVF) offering many the chance of conception. Compared to the solitary oocyte produced during the natural menstrual cycle, the supraphysiological ovarian stimulation needed to produce multiple oocytes during IVF results in a dysfunctional luteal phase that can be insufficient to support implantation and maintain pregnancy. Consequently, hormonal supplementation with luteal phase support, principally exogenous progesterone, is used to optimize pregnancy rates; however, luteal phase support remains largely 'black-box' with insufficient clarity regarding the optimal timing, dosing, route and duration of treatment. Herein, we review the evidence on luteal phase support and highlight remaining uncertainties and future research directions. Specifically, we outline the physiological luteal phase, which is regulated by progesterone from the corpus luteum, and evaluate how it is altered by the supraphysiological ovarian stimulation used during IVF. Additionally, we describe the effects of the hormonal triggers used to mature oocytes on the degree of luteal phase support required. We explain the histological transformation of the endometrium during the luteal phase and evaluate markers of endometrial receptivity that attempt to identify the 'window of implantation'. We also cover progesterone receptor signalling, circulating progesterone levels associated with implantation, and the pharmacokinetics of available progesterone formulations to inform the design of luteal phase support regimens.


Asunto(s)
Fase Luteínica , Progesterona , Embarazo , Femenino , Humanos , Fase Luteínica/fisiología , Gonadotropina Coriónica , Técnicas Reproductivas Asistidas , Fertilización In Vitro/métodos , Inducción de la Ovulación/métodos
12.
Cells ; 11(9)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563710

RESUMEN

Ovarian stimulation is an indispensable part of IVF and is employed to produce multiple ovarian follicles. In women who undergo ovarian stimulation with gonadotropins, supraphysiological levels of estradiol, as well as a premature rise in progesterone levels, can be seen on the day of hCG administration. These alterations in hormone levels are associated with reduced embryo implantation and pregnancy rates in IVF cycles with a fresh embryo transfer. This article aims to improve the reader's understanding of the effects of elevated progesterone levels on human endometrial receptivity and oocyte/embryo quality. Based on current clinical data, it appears that the premature rise in progesterone levels exerts minimal or no effects on oocyte/embryo quality, while advancing the histological development of the secretory endometrium and displacing the window of implantation. These clinical findings strongly suggest that reduced implantation and pregnancy rates are the result of a negatively affected endometrium rather than poor oocyte/embryo quality. Understanding the potential negative impact of elevated progesterone levels on the endometrium is crucial to improving implantation rates following a fresh embryo transfer. Clinical studies conducted over the past three decades, many of which have been reviewed here, have greatly advanced our knowledge in this important area.


Asunto(s)
Endometrio , Progesterona , Implantación del Embrión/fisiología , Transferencia de Embrión , Endometrio/patología , Femenino , Humanos , Oocitos , Embarazo , Progesterona/farmacología
13.
J Clin Invest ; 132(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35349482

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Kisspeptinas/genética , Hígado/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
14.
Nat Cell Biol ; 4(8): 547-55, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12105416

RESUMEN

beta-Arrestins are important in chemoattractant receptor-induced granule release, a process that may involve Ral-dependent regulation of the actin cytoskeleton. We have identified the Ral GDP dissociation stimulator (Ral-GDS) as a beta-arrestin-binding protein by yeast two-hybrid screening and co-immunoprecipitation from human polymorphonuclear neutrophilic leukocytes (PMNs). Under basal conditions, Ral-GDS is localized to the cytosol and remains inactive in a complex formed with beta-arrestins. In response to formyl-Met-Leu-Phe (fMLP) receptor stimulation, beta-arrestin Ral-GDS protein complexes dissociate and Ral-GDS translocates with beta-arrestin from the cytosol to the plasma membrane, resulting in the Ras-independent activation of the Ral effector pathway required for cytoskeletal rearrangement. The subsequent re-association of beta-arrestin Ral-GDS complexes is associated with the inactivation of Ral signalling. Thus, beta-arrestins regulate multiple steps in the Ral-dependent processes that result in chemoattractant-induced cytoskeletal reorganization.


Asunto(s)
Arrestinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Factor de Intercambio de Guanina Nucleótido ral/metabolismo , Animales , Arrestinas/química , Transporte Biológico Activo , Células COS , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citoesqueleto/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Sustancias Macromoleculares , Modelos Biológicos , N-Formilmetionina Leucil-Fenilalanina/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Ratas , Receptores de Formil Péptido , Receptores Inmunológicos/metabolismo , Receptores de Péptidos/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , beta-Arrestinas , Proteínas de Unión al GTP ral/química , Factor de Intercambio de Guanina Nucleótido ral/química
15.
J Biol Chem ; 284(42): 28986-94, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19717561

RESUMEN

Group I metabotropic glutamate receptors (mGluRs) are coupled via phospholipase Cbeta to the hydrolysis of phosphoinositides and function to modulate neuronal excitability and synaptic transmission at glutamatergic synapses. The desensitization of Group I mGluR signaling is thought to be mediated primarily via second messenger-dependent protein kinases and G protein-coupled receptor kinases. We show here that both mGluR1 and mGluR5 interact with the calcineurin inhibitor protein (CAIN). CAIN is co-immunoprecipitated in a complex with Group I mGluRs from both HEK 293 cells and mouse cortical brain lysates. Purified CAIN and its C-terminal domain specifically interact with glutathione S-transferase fusion proteins corresponding to the second intracellular loop and the distal C-terminal tail domains of mGluR1. The interaction of CAIN with mGluR1 could also be blocked using a Tat-tagged peptide corresponding to the mGluR1 second intracellular loop domain. Overexpression of full-length CAIN attenuates the agonist-stimulated endocytosis of both mGluR1a and mGluR5a in HEK 293 cells, but expression of the CAIN C-terminal domain does not alter mGluR5a internalization. In contrast, overexpression of either full-length CAIN or the CAIN C-terminal domain impairs agonist-stimulated inositol phosphate formation in HEK 293 cells expressing mGluR1a. This CAIN-mediated antagonism of mGluR1a signaling appears to involve the disruption of receptor-Galpha(q/11) complexes. Taken together, these observations suggest that the association of CAIN with intracellular domains involved in mGluR/G protein coupling provides an additional mechanism by which Group I mGluR endocytosis and signaling are regulated.


Asunto(s)
Calcineurina/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Calcineurina/química , Calcio/metabolismo , Línea Celular , Endocitosis , Humanos , Fosfatos de Inositol/química , Microscopía Fluorescente/métodos , Modelos Biológicos , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal
16.
Mol Cell Endocrinol ; 515: 110886, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32574585

RESUMEN

Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the ß-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.


Asunto(s)
Fertilidad/fisiología , Sistemas Neurosecretores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , beta-Arrestinas/metabolismo
17.
F S Sci ; 1(1): 67-77, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35559741

RESUMEN

OBJECTIVE: To characterize the expression and signaling of uterine GPR83 in vivo in the nonpregnant and pregnant mouse and in vitro in human endometrial and nonendometrial cells. DESIGN: Controlled laboratory study. SETTING: Not applicable. PATIENTS: Not applicable. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Expression of uterine Gpr83 was determined by quantitative polymerase chain reaction throughout the estrous cycle and during early pregnancy in ovarian-stimulated and non-ovarian-stimulated mice and pregnant and pseudopregnant mice. Expression was also determined in ovariectomized mice after the administration of oil, E2, P4, or E2 + P4 and in stromal cells following 6 days of in vitro decidualization. GPR83 signaling was studied in human endometrial and embryonic kidney cell lines. Cells were treated by PEN, a GPR83 ligand, and PEN-induced extracellular signal-regulated kinase (ERK) phosphorylation was assayed under conditions that blocked Gαq/11 and/or ß-arrestin signaling. RESULTS: Uterine Gpr83 is expressed throughout the estrous cycle and during early pregnancy; expression increases dramatically at the time of uterine receptivity, embryo implantation, and stromal cell decidualization. In the ovariectomized mouse, hormone add-back reveals that Gpr83 expression is highly responsive to the combined treatment of E2 and P4, and studies in the ovarian-stimulated mouse show that expression is also very sensitive to changes in E2 and P4 and is therefore tightly regulated by E2 and P4. At the implantation site, expression is elevated up to D6 of pregnancy and then declines rapidly on D7 and D8, suggesting that if there is any involvement in decidualization, it is likely associated with primary but not secondary stromal cell decidualization. This premise was supported by the observation that stromal cell decidualization in vitro progresses with a decline in Gpr83 expression. In ERα/PR-expressing endometrial Ishikawa cells, GPR83 mediates PEN signals in a Gαq/11-dependent manner, and studies conducted in HEK 293 cells lacking ß-arrestin revealed that GPR83 also signals via a ß-arrestin-dependent manner. When signaling by either one or both pathways is downregulated, cells exhibit a major reduction in responsiveness to PEN treatment, demonstrating that signaling by both pathways is significant. CONCLUSION: We hypothesize that PEN/GPR83 signaling regulates uterine receptivity, embryo implantation, and primary stromal cell decidualization by coupling to Gαq/11- and ß-arrestin-dependent pathways.

18.
Cell Death Dis ; 11(2): 106, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034133

RESUMEN

Triple-negative breast cancer (TNBC) is a highly metastatic and deadly disease. TNBC tumors lack estrogen receptor (ERα), progesterone receptor (PR), and HER2 (ErbB2) and exhibit increased glutamine metabolism, a requirement for tumor growth. The G protein-coupled kisspeptin receptor (KISS1R) is highly expressed in patient TNBC tumors and promotes malignant transformation of breast epithelial cells. This study found that TNBC patients displayed elevated plasma kisspeptin levels compared with healthy subjects. It also provides the first evidence that in addition to promoting tumor growth and metastasis in vivo, KISS1R-induced glutamine dependence of tumors. In addition, tracer-based metabolomics analyses revealed that KISS1R promoted glutaminolysis and nucleotide biosynthesis by increasing c-Myc and glutaminase levels, key regulators of glutamine metabolism. Overall, this study establishes KISS1R as a novel regulator of TNBC metabolism and metastasis, suggesting that targeting KISS1R could have therapeutic potential in the treatment of TNBC.


Asunto(s)
Carcinogénesis/metabolismo , Reprogramación Celular , Metabolismo Energético , Receptores de Kisspeptina-1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica , Nucleótidos/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Kisspeptina-1/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Carga Tumoral , Adulto Joven
19.
Am J Physiol Cell Physiol ; 297(1): C17-27, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19369450

RESUMEN

Placental expression of gonadotropin-releasing hormone (GnRH)-I and II, as well as their cognate receptor, coincides with a period of extensive remodeling of the maternal-fetal interface, near the end of the first trimester of pregnancy. To further define the role of GnRH in human placentation, we performed a microarray screen of HTR-8/SVneo trophoblasts to identify GnRH-regulated genes and their roles in placentation. This screen revealed that GnRH regulates the expression of four angiogenic chemokines: CXCL2, CXCL3, CXCL6, and CXCL8. The microarray data were subsequently confirmed by an extensive Q-PCR time-course analysis. CXCL8, a representative chemokine, was selected for further analysis and shown to be strongly expressed by trophoblasts at the maternal-fetal interface of the human placenta, as well as to accumulate in a GnRH-dependent manner in trophoblast-conditioned media in culture. Trophoblasts were subsequently shown to recruit lymphocytes (Jurkat T cells and primary peripheral blood T and uterine natural killer cells) in chemotaxis assays and this was shown to be GnRH dependent. Furthermore, this recruitment was shown to occur via the release of CXCR1/CXCR2 interacting chemokines, such as the CXCLs investigated in this study. This novel regulation of chemokines by GnRH signaling demonstrates the role of GnRH in regulating the recruitment of lymphocytes to the decidua and the possibility of a direct effect on spiral artery remodeling via the release of proangiogenic chemokines and secondary effects via release of angiogenic factors by recruited lymphocytes.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Quimiocinas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Placentación , Trofoblastos/inmunología , Proteínas Angiogénicas/genética , Buserelina/farmacología , Línea Celular Transformada , Quimiocina CXCL2/metabolismo , Quimiocina CXCL6/metabolismo , Quimiocinas/genética , Quimiocinas CXC/metabolismo , Quimiotaxis de Leucocito , Medios de Cultivo Condicionados/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica/métodos , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Antagonistas de Hormonas/farmacología , Humanos , Interleucina-8/metabolismo , Células Jurkat , Células Asesinas Naturales/inmunología , Neovascularización Fisiológica , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligopéptidos/farmacología , Placentación/efectos de los fármacos , Embarazo , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Linfocitos T/inmunología , Factores de Tiempo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
20.
Semin Reprod Med ; 37(4): 182-190, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31972863

RESUMEN

Several studies provide strong evidence suggesting that in addition to central kisspeptin/KISS1R signaling, the peripheral uterine- and placental-based kisspeptin/KISS1R signaling systems are major regulators of pregnancy. Specifically, the evidence suggests that the uterine-based system regulates embryo implantation and decidualization, while both the uterine- and placental-based systems regulate placentation. Uterine kisspeptin and KISS1R regulate embryo implantation by controlling the availability of endometrial glandular secretions, like leukemia inhibitory factor, which are essential for embryo adhesion to the uterine epithelium. As for decidualization, the data suggest that decidualized stromal cells express KISS1R and secrete kisspeptin-inhibiting decidual cell motility and thereby indirectly regulate embryo and placental invasion of the uterus. Similarly, for placentation, placental kisspeptin and KISS1R negatively regulate extravillous trophoblast migration and invasion and thereby directly control placental invasion of the uterus. Having recognized a significant role for the uterine- and placental-based kisspeptin/KISS1R signaling systems regulating pregnancy, the future looks promising for the development of kisspeptin and KISS1R as prognostic and diagnostic markers of pregnancy disorders and the use of kisspeptin as a therapeutic agent in the prevention and treatment of conditions such as recurring implantation failure, recurrent pregnancy loss, and preeclampsia.


Asunto(s)
Kisspeptinas/metabolismo , Placenta/metabolismo , Embarazo/fisiología , Receptores de Kisspeptina-1/metabolismo , Útero/metabolismo , Animales , Femenino , Humanos , Kisspeptinas/genética , Embarazo/genética , Receptores de Kisspeptina-1/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA