Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(7): 1392-1404.e10, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34019797

RESUMEN

CARD8 detects intracellular danger signals and forms a caspase-1 activating inflammasome. Like the related inflammasome sensor NLRP1, CARD8 autoprocesses into noncovalently associated N-terminal (NT) and C-terminal (CT) fragments and binds the cellular dipeptidyl peptidases DPP8 and 9 (DPP8/9). Certain danger-associated signals, including the DPP8/9 inhibitor Val-boroPro (VbP) and HIV protease, induce proteasome-mediated NT degradation and thereby liberate the inflammasome-forming CT. Here, we report cryoelectron microscopy (cryo-EM) structures of CARD8 bound to DPP9, revealing a repressive ternary complex consisting of DPP9, full-length CARD8, and CARD8-CT. Unlike NLRP1-CT, CARD8-CT does not interact with the DPP8/9 active site and is not directly displaced by VbP. However, larger DPP8/9 active-site probes can directly weaken this complex in vitro, and VbP itself nevertheless appears to disrupt this complex, perhaps indirectly, in cells. Thus, DPP8/9 inhibitors can activate the CARD8 inflammasome by promoting CARD8 NT degradation and by weakening ternary complex stability.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Inflamasomas/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Caspasa 1/metabolismo , Dominio Catalítico/fisiología , Línea Celular , Microscopía por Crioelectrón/métodos , Células HEK293 , Humanos , Proteolisis , Células Sf9
2.
Mol Cell ; 81(3): 423-425, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545058

RESUMEN

Recent studies provide evidence that two chemically and mechanistically distinct signals activate the human NLRP1 inflammasome, challenging the concept that it-like other mammalian inflammasomes characterized thus far-evolved to detect and respond to a single danger-associated molecular pattern.


Asunto(s)
Inflamasomas , Péptido Hidrolasas , Proteasas Virales 3C , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Cisteína Endopeptidasas , Humanos , Inflamasomas/metabolismo , Proteínas NLR , Proteínas Virales
3.
Nature ; 592(7856): 778-783, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731932

RESUMEN

Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 1 (NLRP1) is an inflammasome sensor that mediates the activation of caspase-1 to induce cytokine maturation and pyroptosis1-4. Gain-of-function mutations of NLRP1 cause severe inflammatory diseases of the skin4-6. NLRP1 contains a function-to-find domain that auto-proteolyses into noncovalently associated subdomains7-9, and proteasomal degradation of the repressive N-terminal fragment of NLRP1 releases its inflammatory C-terminal fragment (NLRP1 CT)10,11. Cytosolic dipeptidyl peptidases 8 and 9 (hereafter, DPP8/DPP9) both interact with NLRP1, and small-molecule inhibitors of DPP8/DPP9 activate NLRP1 by mechanisms that are currently unclear10,12-14. Here we report cryo-electron microscopy structures of the human NLRP1-DPP9 complex alone and with Val-boroPro (VbP), an inhibitor of DPP8/DPP9. The structures reveal a ternary complex that comprises DPP9, full-length NLRP1 and the NLRPT CT. The binding of the NLRP1 CT to DPP9 requires full-length NLRP1, which suggests that NLRP1 activation is regulated by the ratio of NLRP1 CT to full-length NLRP1. Activation of the inflammasome by ectopic expression of the NLRP1 CT is consistently rescued by co-expression of autoproteolysis-deficient full-length NLRP1. The N terminus of the NLRP1 CT inserts into the DPP9 active site, and VbP disrupts this interaction. Thus, VbP weakens the NLRP1-DPP9 interaction and accelerates degradation of the N-terminal fragment10 to induce inflammasome activation. Overall, these data demonstrate that DPP9 quenches low levels of NLRP1 CT and thus serves as a checkpoint for activation of the NLRP1 inflammasome.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Inflamasomas/metabolismo , Proteínas NLR/metabolismo , Proteínas Adaptadoras de Señalización CARD , Dominio Catalítico , Microscopía por Crioelectrón , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Células HEK293 , Humanos , Proteínas NLR/química , Estructura Terciaria de Proteína
4.
Nat Chem Biol ; 19(2): 159-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36253549

RESUMEN

The human gut bacterial genotoxin colibactin is a possible key driver of colorectal cancer (CRC) development. Understanding colibactin's biological effects remains difficult owing to the instability of the proposed active species and the complexity of the gut microbiota. Here, we report small molecule boronic acid inhibitors of colibactin biosynthesis. Designed to mimic the biosynthetic precursor precolibactin, these compounds potently inhibit the colibactin-activating peptidase ClbP. Using biochemical assays and crystallography, we show that they engage the ClbP binding pocket, forming a covalent bond with the catalytic serine. These inhibitors reproduce the phenotypes observed in a clbP deletion mutant and block the genotoxic effects of colibactin on eukaryotic cells. The availability of ClbP inhibitors will allow precise, temporal control over colibactin production, enabling further study of its contributions to CRC. Finally, application of our inhibitors to related peptidase-encoding pathways highlights the power of chemical tools to probe natural product biosynthesis.


Asunto(s)
Microbioma Gastrointestinal , Policétidos , Humanos , Mutágenos/metabolismo , Mutágenos/toxicidad , Escherichia coli/metabolismo , Policétidos/química , Péptido Hidrolasas/química
5.
Nat Chem Biol ; 18(5): 565-574, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165443

RESUMEN

Inflammasomes are multiprotein complexes that sense intracellular danger signals and induce pyroptosis. CARD8 and NLRP1 are related inflammasomes that are repressed by the enzymatic activities and protein structures of the dipeptidyl peptidases 8 and 9 (DPP8/9). Potent DPP8/9 inhibitors such as Val-boroPro (VbP) activate both NLRP1 and CARD8, but chemical probes that selectively activate only one have not been identified. Here we report a small molecule called CQ31 that selectively activates CARD8. CQ31 inhibits the M24B aminopeptidases prolidase (PEPD) and Xaa-Pro aminopeptidase 1 (XPNPEP1), leading to the accumulation of proline-containing peptides that inhibit DPP8/9 and thereby activate CARD8. NLRP1 is distinct from CARD8 in that it directly contacts DPP8/9's active site; these proline-containing peptides, unlike VbP, do not disrupt this repressive interaction and thus do not activate NLRP1. We expect that CQ31 will now become a valuable tool to study CARD8 biology.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Aminopeptidasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Neoplasias , Prolina
6.
Immunol Rev ; 297(1): 13-25, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32558991

RESUMEN

Inflammasomes are multiprotein complexes that activate inflammatory cytokines and induce pyroptosis in response to intracellular danger-associated signals. NLRP1 and CARD8 are related germline-encoded pattern recognition receptors that form inflammasomes, but their activation mechanisms and biological purposes have not yet been fully established. Both NLRP1 and CARD8 undergo post-translational autoproteolysis to generate two non-covalently associated polypeptide chains. NLRP1 and CARD8 activators induce the proteasome-mediated destruction of the N-terminal fragment, liberating the C-terminal fragment to form an inflammasome. Here, we review the danger-associated stimuli that have been reported to activate NLRP1 and/or CARD8, including anthrax lethal toxin, Toxoplasma gondii, Shigella flexneri and the small molecule DPP8/9 inhibitor Val-boroPro, focusing on recent mechanistic insights and highlighting unresolved questions. In addition, we discuss the recently identified disease-associated mutations in NLRP1 and CARD8, the potential role that DPP9's protein structure plays in inflammasome regulation, and the emerging link between NLRP1 and metabolism. Finally, we summarize all of this latest research and consider the possible biological purposes of these enigmatic inflammasomes.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Humanos , Inflamasomas/metabolismo , Proteínas NLR , Proteínas de Neoplasias/metabolismo
7.
J Biol Chem ; 298(7): 102032, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580636

RESUMEN

CARD8 is a pattern-recognition receptor that forms a caspase-1-activating inflammasome. CARD8 undergoes constitutive autoproteolysis, generating an N-terminal (NT) fragment with a disordered region and a ZU5 domain and a C-terminal (CT) fragment with UPA and CARD domains. Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 inhibitors, including Val-boroPro, accelerate the degradation of the NT fragment via a poorly characterized proteasome-mediated pathway, thereby releasing the inflammatory CT fragment from autoinhibition. Here, we show that the core 20S proteasome, which degrades disordered and misfolded proteins independent of ubiquitin modification, controls activation of the CARD8 inflammasome. In unstressed cells, we discovered that the 20S proteasome degrades just the NT disordered region, leaving behind the folded ZU5, UPA, and CARD domains to act as an inhibitor of inflammasome assembly. However, in Val-boroPro-stressed cells, we show the 20S proteasome degrades the entire NT fragment, perhaps due to ZU5 domain unfolding, freeing the CT fragment from autoinhibition. Taken together, these results show that the susceptibility of the CARD8 NT domain to 20S proteasome-mediated degradation controls inflammasome activation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Complejo de la Endopetidasa Proteasomal , Proteínas Adaptadoras de Señalización CARD/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Humanos , Inflamasomas/metabolismo , Proteínas de Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinas/metabolismo
8.
Nature ; 543(7647): 681-686, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28329758

RESUMEN

Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , beta-Lactamasas/metabolismo , Animales , Neoplasias de la Mama/genética , Carboxiliasas/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Fosfatidiletanolaminas/metabolismo , Proteínas Supresoras de Tumor/genética , beta-Lactamasas/genética
9.
Isr J Chem ; 63(3-4)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37982048

RESUMEN

Small molecule inhibitors of the intracellular serine peptidases DPP8 and DPP9 (DPP8/9) activate the NLRP1 and CARD8 inflammasomes, but the key DPP8/9 substrates have not yet been identified. DPP8/9 cleave after proline to remove N-terminal dipeptides from peptides or proteins, and studies using pseudo-peptide reporter substrates have suggested that these enzymes may play key roles in the catabolism of many proline-containing peptides generated by the proteasome. Here, we evaluated the degradation of a wide array of actual peptides in cell lysates, and discovered that DPP8/9 are not in fact involved in the processing of the vast majority of proline-containing peptides. Overall, these results indicate that DPP8/9 have a much more limited substrate scope than previously thought, and likely specifically cleave some critically important, but as yet unknown, intracellular peptide or protein that regulates inflammasome activation.

10.
Nat Chem Biol ; 13(1): 46-53, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27820798

RESUMEN

Val-boroPro (Talabostat, PT-100), a nonselective inhibitor of post-proline cleaving serine proteases, stimulates mammalian immune systems through an unknown mechanism of action. Despite this lack of mechanistic understanding, Val-boroPro has attracted substantial interest as a potential anticancer agent, reaching phase 3 trials in humans. Here we show that Val-boroPro stimulates the immune system by triggering a proinflammatory form of cell death in monocytes and macrophages known as pyroptosis. We demonstrate that the inhibition of two serine proteases, DPP8 and DPP9, activates the pro-protein form of caspase-1 independent of the inflammasome adaptor ASC. Activated pro-caspase-1 does not efficiently process itself or IL-1ß but does cleave and activate gasdermin D to induce pyroptosis. Mice lacking caspase-1 do not show immune stimulation after treatment with Val-boroPro. Our data identify what is to our knowledge the first small molecule that induces pyroptosis and reveals a new checkpoint that controls the activation of the innate immune system.


Asunto(s)
Ácidos Borónicos/farmacología , Caspasa 1/metabolismo , Dipeptidasas/antagonistas & inhibidores , Dipéptidos/farmacología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Leucocitos Mononucleares/efectos de los fármacos , Macrófagos/efectos de los fármacos , Piroptosis/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Animales , Ácidos Borónicos/química , Caspasa 1/deficiencia , Línea Celular , Dipeptidasas/metabolismo , Dipéptidos/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Leucocitos Mononucleares/enzimología , Leucocitos Mononucleares/patología , Macrófagos/enzimología , Macrófagos/patología , Ratones , Conformación Molecular , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad
11.
Nat Chem Biol ; 12(4): 268-274, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26900865

RESUMEN

Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Intestinos , Lectinas/metabolismo , Péptido Hidrolasas/metabolismo , Proteómica/métodos , Vibrio cholerae/enzimología , Animales , Cólera/enzimología , Cólera/microbiología , Modelos Animales de Enfermedad , Heces/enzimología , Humanos , Intestinos/enzimología , Intestinos/microbiología , Proteolisis , Conejos , Serina Endopeptidasas/metabolismo
12.
Biochemistry ; 56(51): 6713-6725, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29185711

RESUMEN

Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.


Asunto(s)
Diseño de Fármacos , Sacarina/análogos & derivados , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Diseño Asistido por Computadora , Células HEK293 , Humanos , Proteínas de la Membrana , Sacarina/farmacología , Inhibidores de Serina Proteinasa/química
13.
Nat Chem Biol ; 10(8): 656-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997602

RESUMEN

The selectivity of an enzyme inhibitor is a key determinant of its usefulness as a tool compound or its safety as a drug. Yet selectivity is never assessed comprehensively in the early stages of the drug discovery process, and only rarely in the later stages, because technical limitations prohibit doing otherwise. Here, we report EnPlex, an efficient, high-throughput method for simultaneously assessing inhibitor potency and specificity, and pilot its application to 96 serine hydrolases. EnPlex analysis of widely used serine hydrolase inhibitors revealed numerous previously unrecognized off-target interactions, some of which may help to explain previously confounding adverse effects. In addition, EnPlex screening of a hydrolase-directed library of boronic acid- and nitrile-containing compounds provided structure-activity relationships in both potency and selectivity dimensions from which lead candidates could be more effectively prioritized. Follow-up of a series of dipeptidyl peptidase 4 inhibitors showed that EnPlex indeed predicted efficacy and safety in animal models. These results demonstrate the feasibility and value of high-throughput, superfamily-wide selectivity profiling and suggest that such profiling can be incorporated into the earliest stages of drug discovery.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Carbamatos/farmacología , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Descubrimiento de Drogas , Femenino , Prueba de Tolerancia a la Glucosa , Glutamatos/farmacología , Humanos , Lipopolisacáridos/metabolismo , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Nitrilos/química , Oligopéptidos/farmacología , Piperazinas/farmacología , Prolina/análogos & derivados , Prolina/farmacología , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología
14.
Nature ; 468(7325): 790-5, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085121

RESUMEN

Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.


Asunto(s)
Cisteína/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Animales , Biocatálisis , Línea Celular Tumoral , Secuencia Conservada , Cisteína/análisis , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Hígado/metabolismo , Ratones , Miocardio/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Oxidación-Reducción , Ingeniería de Proteínas , Hidrolisados de Proteína , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteómica/métodos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(17): 6811-6, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21398589

RESUMEN

National Institutes of Health (NIH)-sponsored screening centers provide academic researchers with a special opportunity to pursue small-molecule probes for protein targets that are outside the current interest of, or beyond the standard technologies employed by, the pharmaceutical industry. Here, we describe the outcome of an inhibitor screen for one such target, the enzyme protein phosphatase methylesterase-1 (PME-1), which regulates the methylesterification state of protein phosphatase 2A (PP2A) and is implicated in cancer and neurodegeneration. Inhibitors of PME-1 have not yet been described, which we attribute, at least in part, to a dearth of substrate assays compatible with high-throughput screening. We show that PME-1 is assayable by fluorescence polarization-activity-based protein profiling (fluopol-ABPP) and use this platform to screen the 300,000+ member NIH small-molecule library. This screen identified an unusual class of compounds, the aza-ß-lactams (ABLs), as potent (IC(50) values of approximately 10 nM), covalent PME-1 inhibitors. Interestingly, ABLs did not derive from a commercial vendor but rather an academic contribution to the public library. We show using competitive-ABPP that ABLs are exquisitely selective for PME-1 in living cells and mice, where enzyme inactivation leads to substantial reductions in demethylated PP2A. In summary, we have combined advanced synthetic and chemoproteomic methods to discover a class of ABL inhibitors that can be used to selectively perturb PME-1 activity in diverse biological systems. More generally, these results illustrate how public screening centers can serve as hubs to create spontaneous collaborative opportunities between synthetic chemistry and chemical biology labs interested in creating first-in-class pharmacological probes for challenging protein targets.


Asunto(s)
Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Inhibidores Enzimáticos , Animales , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , National Institutes of Health (U.S.) , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Estados Unidos
16.
Cell Chem Biol ; 31(5): 955-961.e4, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38215746

RESUMEN

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged AlphaFold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Disulfuros , Proteínas NLR , Oxidación-Reducción , Tiorredoxinas , Humanos , Disulfuros/química , Disulfuros/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Proteínas NLR/metabolismo , Proteínas NLR/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Células HEK293 , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/química , Inflamasomas/metabolismo , Cisteína/metabolismo , Cisteína/química
17.
Nat Chem Biol ; 7(7): 469-78, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21572424

RESUMEN

Serine hydrolases are a diverse enzyme class representing ∼1% of all human proteins. The biological functions of most serine hydrolases remain poorly characterized owing to a lack of selective inhibitors to probe their activity in living systems. Here we show that a substantial number of serine hydrolases can be irreversibly inactivated by 1,2,3-triazole ureas, which show negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry-enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the serine hydrolase class, including peptidases (acyl-peptide hydrolase, or APEH), lipases (platelet-activating factor acetylhydrolase-2, or PAFAH2) and uncharacterized hydrolases (α,ß-hydrolase-11, or ABHD11), with exceptional potency in cells (sub-nanomolar) and mice (<1 mg kg(-1)). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T cells. These data indicate 1,2,3-triazole ureas are a pharmacologically privileged chemotype for serine hydrolase inhibition, combining broad activity across the serine hydrolase class with tunable selectivity for individual enzymes.


Asunto(s)
Química Clic/métodos , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/síntesis química , Triazoles/síntesis química , Urea/análogos & derivados , Animales , Encéfalo/enzimología , Línea Celular Tumoral , Humanos , Ratones , Estructura Molecular , Miocardio/enzimología , Serina Proteasas/genética , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/enzimología , Transfección , Triazoles/química , Triazoles/farmacología , Urea/farmacología
19.
Proc Natl Acad Sci U S A ; 107(49): 20941-6, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21084632

RESUMEN

Serine hydrolases (SHs) are one of the largest and most diverse enzyme classes in mammals. They play fundamental roles in virtually all physiological processes and are targeted by drugs to treat diseases such as diabetes, obesity, and neurodegenerative disorders. Despite this, we lack biological understanding for most of the 110+ predicted mammalian metabolic SHs, in large part because of a dearth of assays to assess their biochemical activities and a lack of selective inhibitors to probe their function in living systems. We show here that the vast majority (> 80%) of mammalian metabolic SHs can be labeled in proteomes by a single, active site-directed fluorophosphonate probe. We exploit this universal activity-based assay in a library-versus-library format to screen 70+ SHs against 140+ structurally diverse carbamates. Lead inhibitors were discovered for ∼40% of the screened enzymes, including many poorly characterized SHs. Global profiles identified carbamate inhibitors that discriminate among highly sequence-related SHs and, conversely, enzymes that share inhibitor sensitivity profiles despite lacking sequence homology. These findings indicate that sequence relatedness is not a strong predictor of shared pharmacology within the SH superfamily. Finally, we show that lead carbamate inhibitors can be optimized into pharmacological probes that inactivate individual SHs with high specificity in vivo.


Asunto(s)
Carbamatos/farmacología , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Hidrolasas/antagonistas & inhibidores , Serina , Bibliotecas de Moléculas Pequeñas/farmacología , Carbamatos/uso terapéutico , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Fluoruros , Humanos , Sondas Moleculares , Fosfatos , Unión Proteica , Proteoma , Especificidad por Sustrato
20.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808697

RESUMEN

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged Alphafold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA