RESUMEN
Natural killer cells (NKs) found during pregnancy at the maternal-fetal interface named decidual (d)NKs, show signs of education following first pregnancy, resulting in better placentation and fetus-growth, hence termed pregnancy trained dNKs (PTdNKs). Here we show that PTdNKs provide increased protection of the fetus from Fusobacterium nucleatum (FN) infection. We demonstrate that PTdNKs secrete elevated amounts of the bacteriocidal protein granulysin (GNLY) upon incubation with FN compared to dNKs derived from first pregnancies, which leads to increased killing of FN. Furthermore, we showed mechanistically that the GNLY secretion is mediated through the interaction of the FN's Fap2 protein with Gal-GalNAc present on PTdNKs. Finally, we show in vivo, using GNLY-tg mice that enhanced protection of the fetuses from FN infection is observed, as compared to wild type and that this enhance protection is NK cell dependent. Altogether, we show a new function for PTdNKs as protectors of the fetus from bacterial infection.
Asunto(s)
Decidua , Fusobacterium nucleatum , Embarazo , Femenino , Ratones , Animales , Decidua/metabolismo , Células Asesinas Naturales/metabolismoRESUMEN
Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT.
Asunto(s)
Adenocarcinoma/inmunología , Adenocarcinoma/microbiología , Neoplasias del Colon/inmunología , Neoplasias del Colon/microbiología , Fusobacterium nucleatum/inmunología , Receptores Inmunológicos/inmunología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/inmunología , Línea Celular , Proliferación Celular , Humanos , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Unión ProteicaRESUMEN
Neutrophils play a crucial role in immune defense against and clearance of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection, the most common bacterial infection in healthy humans. CD300a is an inhibitory receptor that binds phosphatidylserine and phosphatidylethanolamine, presented on the membranes of apoptotic cells. CD300a binding to phosphatidylserine and phosphatidylethanolamine, also known as the "eat me" signal, mediates immune tolerance to dying cells. Here, we demonstrate for the first time that CD300a plays an important role in the neutrophil-mediated immune response to UPEC-induced urinary tract infection. We show that CD300a-deficient neutrophils have impaired phagocytic abilities and despite their increased accumulation at the site of infection, they are unable to reduce bacterial burden in the bladder, which results in significant exacerbation of infection and worse host outcome. Finally, we demonstrate that UPEC's pore forming toxin α-hemolysin induces upregulation of the CD300a ligand on infected bladder epithelial cells, signaling to neutrophils to be cleared.
Asunto(s)
Infecciones por Escherichia coli/prevención & control , Neutrófilos/inmunología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/inmunología , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/inmunología , Animales , Apoptosis/inmunología , Infecciones por Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Femenino , Técnicas de Inactivación de Genes , Proteínas Hemolisinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Fagocitosis/genética , Fagocitosis/inmunología , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Receptores Inmunológicos/genética , Vejiga Urinaria/inmunología , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/crecimiento & desarrolloRESUMEN
Accumulating evidence demonstrates that the oral pathobiont Fusobacterium nucleatum is involved in the progression of an increasing number of tumors types. Thus far, the mechanisms underlying tumor exacerbation by F. nucleatum include the enhancement of proliferation, establishment of a tumor-promoting immune environment, induction of chemoresistance, and the activation of immune checkpoints. This review focuses on the mechanisms that mediate tumor-specific colonization by fusobacteria. Elucidating the mechanisms mediating fusobacterial tumor tropism and promotion might provide new insights for the development of novel approaches for tumor detection and treatment.
Asunto(s)
Infecciones por Fusobacterium , Neoplasias , Infecciones por Fusobacterium/microbiología , Fusobacterium nucleatum/fisiología , HumanosRESUMEN
BACKGROUND: Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and -5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin. RESULTS: Histatin-3 and -5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and -5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and -5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin. CONCLUSIONS: Both histatin-3 and -5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8 amino acid sequence at the C-terminus of histatin-3. Extracellular actin might regulate histatin activity in the oral cavity, which should be the subject of further investigation.
Asunto(s)
Actinas/metabolismo , Histatinas/metabolismo , Actinas/química , Dispersión Dinámica de Luz , Colorantes Fluorescentes/química , Histatinas/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar , Unión Proteica , Espectrometría de FluorescenciaRESUMEN
Host defense peptides play an important host-protective role by their microcidal action, immunomodulatory functions, and tissue repair activities. Proteolysis is a common strategy of pathogens used to neutralize host defense peptides. Here, we show that actin, the most abundant structural protein in eukaryotes, binds the LL-37 host defense peptide, protects it from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis, and enables its antimicrobial activity despite the presence of the proteases. Co-localization of LL-37 with extracellular actin was observed in necrotized regions of samples from oral lesions. Competition assays, cross-linking experiments, limited proteolysis, and mass spectrometry revealed that LL-37 binds by specific hydrophobic interactions to the His-40-Lys-50 segment of actin, located in the DNase I binding loop. The integrity of the binding site of both LL-37 and actin is a prerequisite to the binding. Our results demonstrate that actin, presumably released by dead cells and abundant in infected sites, might be utilized by the immune system to enhance spatio-temporal immunity in an attempt to arrest infection and control inflammation.
Asunto(s)
Actinas , Péptidos Catiónicos Antimicrobianos , Proteínas Bacterianas , Péptido Hidrolasas , Porphyromonas gingivalis/enzimología , Pseudomonas aeruginosa/enzimología , Actinas/química , Actinas/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/patología , Femenino , Humanos , Masculino , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Estructura Secundaria de Proteína , Proteolisis , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/patología , CatelicidinasRESUMEN
Periodontitis is a common human chronic inflammatory disease that results in the destruction of the tooth attachment apparatus and tooth loss. Although infections with periopathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are essential for inducing periodontitis, the nature and magnitude of the disease is determined by the host's immune response. Here, we investigate the role played by the NK killer receptor NKp46 (NCR1 in mice), in the pathogenesis of periodontitis. Using an oral infection periodontitis model we demonstrate that following F. nucleatum infection no alveolar bone loss is observed in mice deficient for NCR1 expression, whereas around 20% bone loss is observed in wild type mice and in mice infected with P. gingivalis. By using subcutaneous chambers inoculated with F. nucleatum we demonstrate that immune cells, including NK cells, rapidly accumulate in the chambers and that this leads to a fast and transient, NCR1-dependant TNF-α secretion. We further show that both the mouse NCR1 and the human NKp46 bind directly to F. nucleatum and we demonstrate that this binding is sensitive to heat, to proteinase K and to pronase treatments. Finally, we show in vitro that the interaction of NK cells with F. nucleatum leads to an NCR1-dependent secretion of TNF-α. Thus, the present study provides the first evidence that NCR1 and NKp46 directly recognize a periodontal pathogen and that this interaction influences the outcome of F. nucleatum-mediated periodontitis.
Asunto(s)
Antígenos Ly/inmunología , Fusobacterium nucleatum/inmunología , Células Asesinas Naturales/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Periodontitis/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Células Asesinas Naturales/metabolismo , Ratones , Ratones Noqueados , Periodontitis/patología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Fusobacterium nucleatum is an oral commensal bacterium that can colonize extraoral tumor entities, such as colorectal cancer and breast cancer. Recent studies revealed its ability to modulate the immune response in the tumor microenvironment (TME), promoting cancer progression and metastasis. Importantly, F. nucleatum subsp. animalis was shown to bind to Siglec-7 via lipopolysaccharides, leading to a pro-inflammatory profile in human monocyte-derived dendritic cells. In this study, we show that F. nucleatum subsp. nucleatum RadD binds to Siglec-7 on NK cells, thereby inhibiting NK cell-mediated cancer cell killing. We demonstrate that this binding is dependent on arginine residue R124 in Siglec-7. Finally, we determine that this binding is independent of the known interaction of RadD with IgA. Taken together, our findings elucidate the targeting of Siglec-7 by F. nucleatum subsp. nucleatum RadD as a means to modulate the NK cell response and potentially promoting immune evasion and tumor progression.
RESUMEN
Nano-mupirocin is a PEGylated nano-liposomal formulation of the antibiotic mupirocin, undergoing evaluation for treating infectious diseases and intratumor bacteria. Intratumoral microbiota play an important role in the regulation of tumor progression and therapeutic efficacy. However, antibiotic use to target intratumoral bacteria should be performed in a way that will not affect the gut microbiota, found to enable the efficacy of cancer treatments. Nano-mupirocin may offer such a selective treatment. Herein, we demonstrate the ability of Nano-mupirocin to successfully target tumor-residing Fusobacterium nucleatum without an immediate effect on the gut microbiome. In-depth characterization of this novel formulation was performed, and the main findings include: (i). the pharmacokinetic analysis of mupirocin administered as Nano-mupirocin vs mupirocin lithium (free drug) demonstrated that most of the Nano-mupirocin in plasma is liposome associated; (ii). microbiome analysis of rat feces showed no significant short-term difference between Nano-mupirocin, mupirocin lithium and controls; (iii). Nano-mupirocin was active against intratumoral F. nucleatum, a tumor promoting bacteria that accumulates in tumors of the AT3 mice model of breast cancer. These data suggest the ability of Nano-mupirocin to target tumor residing and promoting bacteria.
Asunto(s)
Antibacterianos , Fusobacterium nucleatum , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Fusobacterium nucleatum/efectos de los fármacos , Femenino , Liposomas , Nanopartículas/química , Línea Celular Tumoral , Ratones , Ratas Sprague-Dawley , Ratas , Heces/microbiología , Humanos , Polietilenglicoles/químicaRESUMEN
Host defense peptides are immediate responders of the innate immunity that express antimicrobial, immunoregulatory, and wound-healing activities. Neutrophils are a major source for oral host defense peptides, and phagocytosis by neutrophils is a major mechanism for bacterial clearance in the gingival tissue. Dysfunction of or reduction in the numbers of neutrophils or deficiency in the LL-37 host defense peptide was each previously linked with proliferation of oral Aggregatibacter actinomycetemcomitans which resulted in an aggressive periodontal disease. Surprisingly, A. actinomycetemcomitans shows resistance to high concentrations of LL-37. In this study, we demonstrated that submicrocidal concentrations of LL-37 inhibit biofilm formation by A. actinomycetemcomitans and act as opsonins and agglutinins that greatly enhance its clearance by neutrophils and macrophages. Improved uptake of A. actinomycetemcomitans by neutrophils was mediated by their opsonization with LL-37. Enhanced phagocytosis and killing of A. actinomycetemcomitans by murine macrophage-like RAW 264.7 cells were dependent on their preagglutination by LL-37. Although A. actinomycetemcomitans is resistant to the bactericidal effect of LL-37, our results offer a rationale for the epidemiological association between LL-37 deficiency and the expansion of oral A. actinomycetemcomitans and indicate a possible therapeutic use of cationic peptides for host defense.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/crecimiento & desarrollo , Proteínas Opsoninas/metabolismo , Pasteurellaceae/efectos de los fármacos , Pasteurellaceae/fisiología , Relación Dosis-Respuesta a Droga , Proteínas Opsoninas/genética , Unión Proteica , CatelicidinasRESUMEN
Some agents, including Escherichia coli and group A Streptococcus pyogenes cause infections in oxygen depleted sites. LL-37 is a human host defence peptide shown previously to play an important role in controlling infections caused by these bacteria. However, the effect of oxygen levels on the antimicrobial activity of LL-37 remains obscure. In order to test the effect of oxygen (or lack thereof) on LL-37's activity against E. coli and S. pyogenes, a method for adapting commonly used microtiter plates for real-time growth-kinetic (and growth-inhibition) measurements under anaerobic conditions was developed. Using the proposed method, anaerobic conditions were attained in the microplate within 30 min and were maintained for at least five days. Anaerobiosis was further confirmed by comparing the growth of two anaerobic oral species (Porphyromonas gingivalis and Fusobacterium nucleatum) in anaerobic compartments of microtiter plates versus aerobic ones. Both species grew only in the anaerobic compartments of the plates as indicated by the growth curves generated. The sensitivities of E. coli and S. pyogenes to LL-37 were tested under anaerobic conditions and compared to those in aerobic ones. The oxygen facultative E. coli grew to a higher density under aerobic conditions and its sensitivity to LL-37 was increased under anaerobiosis. The microaerophilic pathogen S. pyogenes grew faster and to a higher density under anaerobic conditions and was much more resistant to LL-37 under oxygen deprivation. Our results suggest that resistance to antimicrobial agents of microbes infecting anaerobic-microaerophilic sites should be tested under oxygen-restricted conditions.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/metabolismo , Anaerobiosis , Antiinfecciosos/farmacología , Escherichia coli/crecimiento & desarrollo , Fusobacterium nucleatum/efectos de los fármacos , Fusobacterium nucleatum/crecimiento & desarrollo , Humanos , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/crecimiento & desarrollo , Streptococcus pyogenes/crecimiento & desarrollo , CatelicidinasRESUMEN
Over the past decades, the main techniques used to visualize bacteria in tissue have improved but are still mainly based on indirect recognition of bacteria. Both microscopy and molecular recognition are being improved, but most procedures for bacteria detection in tissue involve extensive damage. Here, we describe a method to visualize bacteria in tissue slices from an in vivo model of breast cancer. This method allows examining trafficking and colonization of fluorescein-5-isothiocyanate (FITC)-stained bacteria in various tissues. The protocol provides direct visualization of fusobacterial colonization in breast cancer tissue. Rather than processing the tissue or confirming bacterial colonization by PCR or culture, the tissue is directly imaged using multiphoton microscopy. This direct visualization protocol causes no damage to the tissue; therefore, all structures can be identified. This method can be combined with others to co-visualize bacteria, types of cells, or protein expression in cells.
RESUMEN
Host defense peptides are innate immune effectors that possess both bactericidal activities and immunomodulatory functions. Deficiency in the human host defense peptide LL-37 has previously been correlated with severe periodontal disease. Treponema denticola is an oral anaerobic spirochete closely associated with the pathogenesis of periodontal disease. The T. denticola major surface protein (MSP), involved in adhesion and cytotoxicity, and the dentilisin serine protease are key virulence factors of this organism. In this study, we examined the interactions between LL-37 and T. denticola. The three T. denticola strains tested were susceptible to LL-37. Dentilisin was found to inactivate LL-37 by cleaving it at the Lys, Phe, Gln, and Val residues. However, dentilisin deletion did not increase the susceptibility of T. denticola to LL-37. Furthermore, dentilisin activity was found to be inhibited by human saliva. In contrast, a deficiency of the T. denticola MSP increased resistance to LL-37. The MSP-deficient mutant bound less fluorescently labeled LL-37 than the wild-type strain. MSP demonstrated specific, dose-dependent LL-37 binding. In conclusion, though capable of LL-37 inactivation, dentilisin does not protect T. denticola from LL-37. Rather, the rapid, MSP-mediated binding of LL-37 to the treponemal outer sheath precedes cleavage by dentilisin. Moreover, in vivo, saliva inhibits dentilisin, thus preventing LL-37 restriction and ensuring its bactericidal and immunoregulatory activities.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Bacterianas/metabolismo , Quimotripsina/metabolismo , Porinas/metabolismo , Treponema denticola/efectos de los fármacos , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Quimotripsina/genética , Eliminación de Gen , Humanos , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas , Porinas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , CatelicidinasRESUMEN
Bladder cancer is the 4th leading cancer in men. Tumor resection followed by bladder instillation of Bacillus Calmette-Guérin (BCG) is the primary treatment for high-risk patients with Non-Muscle Invasive Bladder Cancer (NMIBC) to prevent recurrence and progression to muscle-invasive disease. This treatment, however, lacks efficiency and causes severe adverse effects. Mannose residues are expressed on bladder surfaces and their levels were indicated to be higher in bladder cancer. Intravesical instillations of a recombinant Pseudomonas aeruginosa (PA) overexpressing the mannose-sensitive hemagglutination fimbriae (PA-MSHA), and of a mannose-specific lectin-drug conjugate showed efficiency against NMIBC in murine models of bladder cancer. Urothelial mannosylation facilitates bladder colonization by Uropathogenic E. coli (UPEC) via the interaction with the FimH mannose lectin, positioned at the tip of type 1 fimbria. A recombinant BCG strain overexpressing FimH on its outer surface, exhibited higher attachment and internalization to bladder cancer cells and increased effectivity in treating bladder cancer in mice. Investigating the pattern of mannose expression in NMIBC is important for improving treatment. Here, using tissue microarrays containing multiple normal and cancerous bladder samples, and lectins, we confirm that human bladder cancer cells express high mannose levels. Using UPEC mutants lacking or overexpressing type 1 fimbria, we also demonstrate that tumor-induced hypermannosylation increases type 1 fimbria mediated UPEC attachment to human and mouse bladder cancer. Our results provide an explanation for the effectiveness of PA-MSHA and the FimH-overexpressing BCG and support the hypothesis that mannose-targeted therapy holds potential for improving bladder cancer treatment.
Asunto(s)
Mycobacterium bovis , Neoplasias de la Vejiga Urinaria , Escherichia coli Uropatógena , Animales , Vacuna BCG , Proteínas Fimbrias/metabolismo , Humanos , Lectinas , Manosa , Lectinas de Unión a Manosa , Ratones , Pseudomonas aeruginosa/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismoRESUMEN
Intestinal bacterial communities participate in gut homeostasis and are recognized as crucial in bowel inflammation and colorectal cancer (CRC). Fusobacterium nucleatum (Fn), a pathobiont of the oral microflora, has recently emerged as a CRC-associated microbe linked to disease progression, metastasis, and a poor clinical outcome; however, the primary cellular and/or microenvironmental targets of this agent remain elusive. We report here that Fn directly targets putative colorectal cancer stem cells (CR-CSCs), a tumor cell subset endowed with cancer re-initiating capacity after surgery and chemotherapy. A patient-derived CSC line, highly enriched (70%) for the stem marker CD133, was expanded as tumor spheroids, dissociated, and exposed in vitro to varying amounts (range 100-500 MOI) of Fn. We found that Fn stably adheres to CSCs, likely by multiple interactions involving the tumor-associated Gal-GalNac disaccharide and the Fn-docking protein CEA-family cell adhesion molecule 1 (CEACAM-1), robustly expressed on CSCs. Importantly, Fn elicited innate immune responses in CSCs and triggered a growth factor-like, protein tyrosine phosphorylation cascade largely dependent on CEACAM-1 and culminating in the activation of p42/44 MAP kinase. Thus, the direct stimulation of CSCs by Fn may contribute to microbiota-driven colorectal carcinogenesis and represent a target for innovative therapies.
Asunto(s)
Neoplasias Colorrectales , Infecciones por Fusobacterium , Células Madre Neoplásicas , Antígenos CD , Moléculas de Adhesión Celular , Neoplasias Colorrectales/patología , Disacáridos , Infecciones por Fusobacterium/complicaciones , Infecciones por Fusobacterium/microbiología , Fusobacterium nucleatum/fisiología , Humanos , Células Madre Neoplásicas/metabolismo , TirosinaRESUMEN
Candida albicans is the most common fungal pathogen and a prevalent cause of deadly bloodstream infections. Better understanding of the immune response against it, and the ways by which it evades immunity, are crucial for developing new therapeutics against it. Natural Killer (NK) cells are innate lymphocytes best known for their role against viruses and tumors. In recent years it became clear that NK cells also play an important role in anti-fungal immunity. Here we show that while NK cells recognize and eliminate C. albicans, the fungal cells inhibit NK cells by manipulating the immune checkpoint receptor TIGIT (T cell immunoreceptor with Ig and ITIM domains) in both humans and mice. We identify the responsible fungal ligands as members of the Als (Agglutinin-Like Sequences) protein family. Furthermore, we show that blocking this interaction using immunotherapy with a TIGIT-blocking antibody can re-establish anti-Candida immunity and serve as a potential therapeutic tool.
Asunto(s)
Aglutininas , Candida albicans , Aglutininas/metabolismo , Animales , Candida albicans/metabolismo , Inmunoterapia , Células Asesinas Naturales , Ratones , Receptores Inmunológicos/metabolismoRESUMEN
While the existence of an indigenous placental microbiota remains controversial, several pathogens are known to be involved in adverse pregnancy outcomes. Fusobacterium nucleatum is an oral bacterium that is one of several bacteria associated with preterm birth. Oral fusobacteria translocate to the placenta hematogenously; however, the mechanisms localizing them to the placenta remain unclear. Here, using peanut agglutinin, we demonstrate that the level of Gal-GalNAc (Galß1-3GalNAc; Thomsen Friedenreich antigen) found on trophoblasts facing entering maternal blood rises during gestation and is recognized by the fusobacterial Fap2 Gal-GalNAc lectin. F. nucleatum binding to human and mouse placenta correlates with Gal-GalNAc levels and is reduced upon O-glycanase treatment or with soluble Gal-GalNAc. Fap2-inactivated F. nucleatum shows reduced binding to Gal-GalNAc-displaying placental sections. In a mouse model, intravenously injected Fap2-expressing F. nucleatum, but not a Fap2 mutant, reduces mouse fetal survival by 70%.
Asunto(s)
Fusobacterium nucleatum , Nacimiento Prematuro , Poliposis Adenomatosa del Colon , Animales , Antígenos de Carbohidratos Asociados a Tumores , Femenino , Lectinas , Ratones , Placenta , EmbarazoRESUMEN
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Asunto(s)
Bacteriófagos , Microbiota , Neoplasias , Disbiosis , Humanos , Neoplasias/terapia , Microambiente TumoralRESUMEN
Recent studies on the oral, anaerobic, gram-negative bacterium Fusobacterium nucleatum revealed its presence and involvement in colorectal, esophageal and breast cancer. We previously demonstrated that F. nucleatum binds and activates the human inhibitory receptors TIGIT and CEACAM1 leading to inhibition of T and NK cell anti-tumor immunity. CEACAM1 was found to be bound and activated by the fusobacterial trimeric autotransporter adhesin CbpF. Here we report the generation of a recombinant E. coli expressing full-length CbpF that efficiently binds and activates CEACAM1.
Asunto(s)
Escherichia coli , Fusobacterium nucleatum , Antígenos CD , Moléculas de Adhesión Celular/genética , Escherichia coli/genética , Humanos , Sistemas de Secreción Tipo VRESUMEN
Group A Streptococcus (GAS) causes diverse human diseases, including life-threatening soft-tissue infections. It is accepted that the human antimicrobial peptide LL-37 protects the host by killing GAS. Here, we show that GAS extracellular protease ScpC N-terminally cleaves LL-37 into two fragments of 8 and 29 amino acids, preserving its bactericidal activity. At sub-bactericidal concentrations, the cleavage inhibits LL-37-mediated neutrophil chemotaxis, shortens neutrophil lifespan, and eliminates P2X7 and EGF receptors' activation. Mutations at the LL-37 cleavage site protect the peptide from ScpC-mediated splitting, maintaining all its functions. The mouse LL-37 ortholog CRAMP is neither cleaved by ScpC nor does it activate P2X7 or EGF receptors. Treating wild-type or CRAMP-null mice with sub-bactericidal concentrations of the non-cleavable LL-37 analogs promotes GAS clearance that is abolished by the administration of either P2X7 or EGF receptor antagonists. We demonstrate that LL-37-mediated activation of host receptors is critical for defense against GAS soft-tissue infections.