Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Theor Appl Genet ; 135(3): 755-776, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34283259

RESUMEN

KEY MESSAGE: We present a comprehensive survey of cytogenetic and genomic diversity of the GGAtAt genepool of wheat, thereby unlocking these plant genetic resources for wheat improvement. Wheat yields are stagnating around the world and new sources of genes for resistance or tolerances to abiotic traits are required. In this context, the tetraploid wheat wild relatives are among the key candidates for wheat improvement. Despite its potential huge value for wheat breeding, the tetraploid GGAtAt genepool is largely neglected. Understanding the population structure, native distribution range, intraspecific variation of the entire tetraploid GGAtAt genepool and its domestication history would further its use for wheat improvement. The paper provides the first comprehensive survey of genomic and cytogenetic diversity sampling the full breadth and depth of the tetraploid GGAtAt genepool. According to the results obtained, the extant GGAtAt genepool consists of three distinct lineages. We provide detailed insights into the cytogenetic composition of GGAtAt wheats, revealed group- and population-specific markers and show that chromosomal rearrangements play an important role in intraspecific diversity of T. araraticum. The origin and domestication history of the GGAtAt lineages is discussed in the context of state-of-the-art archaeobotanical finds. We shed new light on the complex evolutionary history of the GGAtAt wheat genepool and provide the basis for an increased use of the GGAtAt wheat genepool for wheat improvement. The findings have implications for our understanding of the origins of agriculture in southwest Asia.


Asunto(s)
Domesticación , Triticum , Variación Genética , Fenotipo , Fitomejoramiento , Tetraploidía , Triticum/genética
2.
New Phytol ; 226(5): 1263-1273, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31913521

RESUMEN

The wheat group offers an outstanding system to address the interplay between hybridization, chromosomal evolution and biological diversification. Most diploid wild wheats originated following hybridization between the A-genome lineage and the B-genome lineage some 4 Myr ago, resulting in an admixed D-genome lineage that presented dramatic radiation accompanied by considerable changes in genome size and chromosomal rearrangements. Comparative profiling of low-copy genes, repeated sequences and transposable elements among those divergent species characterized by different karyotypes highlights high genome dynamics and sheds new light on the processes underlying chromosomal evolution in wild wheats. One of the hybrid clades presents upsizing of metacentric chromosomes going along with the proliferation of specific repeats (i.e. 'genomic obesity'), whereas other species show stable genome size associated with increasing chromosomal asymmetry. Genetic and ecological variation in those specialized species suggest that genome restructuring was coupled with adaptive processes to support the evolution of a majority of acrocentric chromosomes. This synthesis of current knowledge on genome restructuring across the diversity of wild wheats paves the way towards surveys based on latest sequencing technologies to characterize valuable resources and address the significance of chromosomal evolution in species with complex genomes.


Asunto(s)
Hibridación Genética , Triticum , Elementos Transponibles de ADN , Diploidia , Genoma de Planta/genética , Cariotipo , Triticum/genética
3.
Mol Genet Genomics ; 291(3): 1259-75, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26898967

RESUMEN

Wheat belongs to the most important crops domesticated in the Fertile Crescent. In this region, fortunately, locally adapted wheat landraces are still present in farmers' fields. This material might be of immense value for future breeding programs. However, especially wheat germplasm adapted to the central part of the Fertile Crescent has been poorly characterized for allelic variation at key loci of agricultural importance. Grain hardness is an important trait influencing milling and baking quality of wheat. This trait is mainly determined by three tightly linked genes, namely, Puroindoline a (Pina), Puroindoline b (Pinb), and Grain softness protein-1 (Gsp-1), at the Hardness (Ha-D) locus on chromosome 5DS. To investigate genetic diversity and haplotype structure, we resequenced 96 diverse wheat lines at Pina-D1, Pinb-D1, Gsp-A1, Gsp-B1, and Gsp-D1. Three types of null alleles were identified using diagnostic primers: the first type was a multiple deletion of Pina-D1, Pinb-D1, and Gsp-D1 (Pina-D1k), the second was a Pina-D1 deletion (Pina-D1b); and the third type was a deletion of Gsp-D1, representing a novel null allele designated here as Gsp-D1k. Sequence analysis resulted in four allelic variants at Pinb-D1 and five at Gsp-A1, among them Gsp-A1-V was novel. Pina-D1, Gsp-B1 and Gsp-D1 sequences were monomorphic. Haplotype and phylogenetic analysis suggested that (1) bread wheat inherited its 5DS telomeric region probably from wild diploid Ae. tauschii subsp. tauschii found within an area from Transcaucasia to Caspian Iran; and that (2) the Ha-A and Ha-B homoeoloci were most closely related to sequences of wild tetraploid T. dicocco ides. This study provides a good overview of available genetic diversity at Pina-D1, Pinb-D1, and Gsp-1, which can be exploited to extend the range of grain texture traits in wheat.


Asunto(s)
Variación Genética , Proteínas de Plantas/genética , Análisis de Secuencia de ADN/métodos , Triticum/clasificación , Adaptación Biológica , Evolución Molecular , Haplotipos , Filogenia , Sitios de Carácter Cuantitativo , Triticum/genética , Triticum/crecimiento & desarrollo
4.
Plant Physiol ; 167(1): 189-99, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25398545

RESUMEN

Bread wheat (Triticum aestivum) inflorescences, or spikes, are characteristically unbranched and normally bear one spikelet per rachis node. Wheat mutants on which supernumerary spikelets (SSs) develop are particularly useful resources for work towards understanding the genetic mechanisms underlying wheat inflorescence architecture and, ultimately, yield components. Here, we report the characterization of genetically unrelated mutants leading to the identification of the wheat FRIZZY PANICLE (FZP) gene, encoding a member of the APETALA2/Ethylene Response Factor transcription factor family, which drives the SS trait in bread wheat. Structural and functional characterization of the three wheat FZP homoeologous genes (WFZP) revealed that coding mutations of WFZP-D cause the SS phenotype, with the most severe effect when WFZP-D lesions are combined with a frameshift mutation in WFZP-A. We provide WFZP-based resources that may be useful for genetic manipulations with the aim of improving bread wheat yield by increasing grain number.


Asunto(s)
Flores/crecimiento & desarrollo , Genes de Plantas/fisiología , Triticum/genética , Flores/genética , Mutación del Sistema de Lectura/genética , Mutación del Sistema de Lectura/fisiología , Genes de Plantas/genética , Sitios Genéticos/genética , Fenotipo , Triticum/crecimiento & desarrollo , Triticum/fisiología
6.
Cytogenet Genome Res ; 146(1): 71-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26160023

RESUMEN

Karyotypes of 3 diploid wheat species containing different variants of the A-genome, Triticum boeoticum (A(b)), T. monococcum (A(b)), and T. urartu (A(u)), were examined using C-banding and FISH with DNA probes representing 5S and 45S rDNA families, the microsatellite sequences GAAn and GTTn, the already known satellite sequences pSc119.2, Spelt52, Fat, pAs1, and pTa535, and a newly identified repeat called Aesp_SAT86. The C-banding patterns of the 3 species in general were similar; differences were observed in chromosomes 4A and 6A. Besides 2 major 45S rDNA loci on chromosomes 1A and 5A, 2 minor polymorphic NORs were observed in the terminal part of 5AL and in the distal part of 6AS in all species. An additional minor locus was found in the distal part of 7A(b)L of T. boeoticum and T. monococcum, but not in T. urartu. Two 5S rDNA loci were observed in 1AS and 5AS. The pTa535 probe displayed species- and chromosome-specific hybridization patterns, allowing complete chromosome identification and species discrimination. The distribution of pTa535 on the A(u)-genome chromosomes was more similar to that on the A-genome chromosomes of T. dicoccoides and T. araraticum, thus confirming the origin of these genomes from T. urartu. The probe pAs1 allowed the identification of 4 chromosomes of T. urartu and 2 of T. boeoticum or T. monococcum. The Aesp_SAT86-derived patterns were polymorphic; main clusters were observed on chromosomes 1A(u )and 3A(u) of T. urartu and chromosomes 3A(b) and 6A(b) of T. boeoticum. Thus, a set of probes, pTa535, pAs1, GAAn and GTTn, pTa71, pTa794, and Aesp_SAT86, proved to be most informative for the analysis of A-genomes in diploid and polyploid wheat species.


Asunto(s)
Genes de Plantas , Triticum/genética , Secuencia de Bases , Mapeo Cromosómico , Cromosomas de las Plantas/genética , ADN Ribosómico/genética , Diploidia , Marcadores Genéticos , Repeticiones de Microsatélite , Poliploidía , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Inorg Chem ; 52(13): 7578-92, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23773147

RESUMEN

Six new platinum(II) chloride complexes 1-6 containing a 6-[9,9-di(2-ethylhexyl)-7-R-9H-fluoren-2-yl]-2,2'-bipyridine (R = NO2, CHO, benzothiazol-2-yl (BTZ), n-Bu, carbazol-9-yl (CBZ), NPh2) ligand were synthesized and characterized. The influence of the electron-donating or electron-withdrawing substituent at the 7-position of the fluorenyl component on the photophysics of these complexes was systematically investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). Electron-withdrawing or -donating substituents exert distinct effects on the photophysics of the complexes. All complexes feature a low-energy, broad (1)MLCT (metal-to-ligand charge transfer)/(1)ILCT (intraligand charge transfer)/(1)π,π* absorption band (tail) above ca. 430 nm and a major absorption band(s) between 320 and 430 nm, which admix (1)MLCT, (1)π,π*, (1)ILCT, and/or (1)LLCT (ligand-to-ligand charge transfer) characters. The contributions of different configurations to the major absorption band(s) vary depending on the nature of the substituent. Strong electron-donating or -withdrawing substituents (NPh2 and NO2) and the aromatic substituent BTZ cause a pronounced red-shift of the absorption spectra of 1, 3, and 6. All complexes are emissive at room temperature and at 77 K. The emitting excited state is dominated by (3)π,π* character in 1-3, with some contributions from (3)MLCT in 1 and 2, while the emission is predominantly from the (3)MLCT state for 4 and 5 but with some (3)π,π* character. For 6, the emitting state is (3)ILCT in nature. With the increased electron-donating ability of the substituent, the (3)π,π* character diminishes while charge transfer character increases. All complexes exhibit broad and strong triplet excited-state absorption (TA) from the near-UV to the near-IR spectral region. The TA band maxima are red-shifted for complexes 1-3 (which possess the electron-withdrawing substituents) compared to those of 4-6 (which contain electron-donating substituents). All complexes manifest strong reverse saturable absorption (RSA) for a nanosecond laser pulse at 532 nm, which originates from the much stronger triplet excited-state absorption than the ground-state absorption of 1-6 in the visible spectral region. The strength of RSA follows this trend: 4 ≈ 5 < 1 ≈ 3 < 2 < 6, which is primarily determined by the ratio of the triplet excited-state absorption cross section relative to that of the ground-state absorption (σex/σ0) at 532 nm. The σex/σ0 ratios (116-261) of 1-6 at 532 nm are much larger than those of most of the reverse saturable absorbers reported in the literature, with the ratio of 6 (σex/σ0 = 261) being among the largest values reported to date. This makes complexes 1-6, especially 6, very promising reverse saturable absorbers.


Asunto(s)
2,2'-Dipiridil/química , Benzotiazoles/química , Carbazoles/química , Compuestos Organoplatinos/química , Compuestos de Platino/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares
8.
Front Plant Sci ; 14: 1166854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346114

RESUMEN

Recently, entire genebank collections of wheat have been extensively characterized with sequencing data. We have identified introgressions using these genotyping-by-sequencing and whole-genome sequencing data. On the basis of our results, we provide information about predicted introgressions at 1-Mb resolution for 9,172 wheat samples as a resource for breeders and scientists. We recommend that all plant genetic resources, including genebank collections, be characterized using a combination of variant calling and introgression prediction. This is necessary to identify potential duplicates in collections efficiently and reliably, and to select promising germplasms with potentially beneficial introgressions for further characterization and prospective breeding application.

9.
Comp Cytogenet ; 17: 75-112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304148

RESUMEN

Aegilopscomosa Smith in Sibthorp et Smith, 1806 is diploid grass with MM genome constitution occurring mainly in Greece. Two morphologically distinct subspecies - Ae.c.comosa Chennaveeraiah, 1960 and Ae.c.heldreichii (Holzmann ex Boissier) Eig, 1929 are discriminated within Ae.comosa, however, genetic and karyotypic bases of their divergence are not fully understood. We used Fluorescence in situ hybridization (FISH) with repetitive DNA probes and electrophoretic analysis of gliadins to characterize the genome and karyotype of Ae.comosa to assess the level of their genetic diversity and uncover mechanisms leading to radiation of subspecies. We show that two subspecies differ in size and morphology of chromosomes 3M and 6M, which can be due to reciprocal translocation. Subspecies also differ in the amount and distribution of microsatellite and satellite DNA sequences, the number and position of minor NORs, especially on 3M and 6M, and gliadin spectra mainly in the a-zone. Frequent occurrence of hybrids can be caused by open pollination, which, along with genetic heterogeneity of accessions and, probably, the lack of geographic or genetic barrier between the subspecies, may contribute to extremely broad intraspecific variation of GAAn and gliadin patterns in Ae.comosa, which are usually not observed in endemic plant species.

11.
Plants (Basel) ; 13(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202355

RESUMEN

A comparative karyotype analysis of four species of yellow-flowered Eranthis sect. Eranthis, i.e., E. bulgarica, E. cilicica, E. hyemalis, and E. longistipitata from different areas, has been carried out for the first time. All the studied specimens had somatic chromosome number 2n = 16 with basic chromosome number x = 8. Karyotypes of the investigated plants included five pairs of metacentric chromosomes and three pairs of submetacentric/subtelocentric chromosomes. The chromosome sets of the investigated species differ mainly in the ratio of submetacentric/subtelocentric chromosomes, their relative lengths, and arm ratios. A new oligonucleotide probe was developed and tested to detect 45S rDNA clusters. Using this probe and an oligonucleotide probe to 5S rDNA, 45S and 5S rDNA clusters were localized for the first time on chromosomes of E. cilicica, E. hyemalis, and E. longistipitata. Major 45S rDNA clusters were identified on satellite chromosomes in all the species; in E. cilicica, minor clusters were also identified in the terminal regions of one metacentric chromosome pair. The number and distribution of 5S rDNA clusters is more specific. In E. cilicica, two major clusters were identified in the pericentromeric region of a pair of metacentric chromosomes. Two major clusters in the pericentromeric region of a pair of submetacentric chromosomes and two major clusters in the interstitial region of a pair of metacentric chromosomes were observed in E. longistipitata. E. hyemalis has many clusters of different sizes, localized mainly in the pericentromeric regions. Summarizing new data on the karyotype structure of E. sect. Eranthis and previously obtained data on E. sect. Shibateranthis allowed conclusions to be formed about the clear interspecific karyological differences of the genus Eranthis.

12.
Chromosome Res ; 19(4): 541-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21556954

RESUMEN

The genetic classification for the N-genome chromosomes has been developed on the basis of C-banding analysis on the set of Triticum aestivum × Aegilops uniaristata single chromosome addition lines and examination of A. uniaristata (2n = 2 × = 14, NN), Aegilops ventricosa (2n = 4 × = 28, DDNN) and Aegilops recta (2n = 6 × = 42, UUX(n)X(n)NN) accessions carrying intergenomic translocations using fluorescence in situ hybridisation with probes for three repetitive DNA sequences as well as the 5S and 45S rDNA families. The N-genome chromosomes of the tetraploid A. ventricosa show significant changes relative to the diploid progenitor species, while those of the hexaploid A. recta are similar to A. uniaristata with regard to the distribution of C-bands, 45S and 5S rDNA loci and hybridisation sites of all the three families of tandem repeats. The possible mechanisms of N-genome evolution are discussed.


Asunto(s)
Diploidia , Genoma de Planta/genética , Poaceae/genética , Poliploidía , Bandeo Cromosómico , Cromosomas de las Plantas/genética , ADN Ribosómico/genética , Hibridación Fluorescente in Situ , Cariotipificación , Secuencias Repetidas en Tándem
13.
J Phys Chem A ; 116(20): 4878-89, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22519843

RESUMEN

The photophysics of six bipyridyl platinum(II) bisstilbenylacetylide complexes with different auxiliary substituents are reported. These photophysical properties have been investigated in detail by UV-vis, photoluminescence (both at room temperature and at 77 K) and transient absorption (nanosecond and femtosecond) spectroscopies, as well as by linear response time-dependent density functional theory (TD-DFT) calculations. The photophysics of the complexes are found to be dominated by the singlet and triplet π,π* transitions localized at the stilbenylacetylide ligands with strong admixture of the metal-to-ligand (MLCT) and ligand-to-ligand (LLCT) charge-transfer characters. The interplay between the π,π* and MLCT/LLCT states depends on the electron-withdrawing or -donating properties of the substituents on the stilbenylacetylide ligands. All complexes exhibit remarkable reverse saturable absorption (RSA) at 532 nm for nanosecond laser pulses, with the complex that contains the NPh(2) substituent giving the strongest RSA and the complex with NO(2) substituent showing the weakest RSA.


Asunto(s)
Compuestos Organoplatinos/química , Ligandos , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Procesos Fotoquímicos , Teoría Cuántica
14.
Sci Rep ; 12(1): 1908, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115645

RESUMEN

Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.

15.
Front Plant Sci ; 13: 980764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325551

RESUMEN

Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.

16.
Langmuir ; 27(13): 8377-83, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21627143

RESUMEN

The interaction between CdSe nanocrystals (NCs) passivated with trioctylphosphine oxide (TOPO) ligands and a series of Ru-polypyridine complexes-[Ru(bpy)(3)](PF(6))(2) (1), [Ru(bpy)(2)(mcb)](PF(6))(2) (2), [Ru(bpy)(mcb)(2)](BarF)(2) (3), and [Ru(tpby)(2)(dcb)](PF(6))(2) (4) (where bpy = 2,2'-bipyridine, mcb = 4-carboxy-4'-methyl-2,2'-bipyridine, tbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; dcb = 4,4'-dicarboxy-2,2'-bipyridine, and BarF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)-was studied by attenuated total reflectance FTIR (ATR-FTIR) and modeled using density functional theory (DFT). ATR-FTIR studies reveal that when the solid film of NCs is exposed to an acetonitrile solution of 2, 3, or 4, the complexes chemically bind to the NC surface through their carboxylic acid groups, replacing TOPO ligands. The corresponding spectral changes are observed on a time scale of minutes. In the case of 2, the FTIR spectral changes clearly show that the complex adsorption is associated with a loss of proton from the carboxylic acid group. In the case of 3 and 4, deprotonation of the anchoring group is also detected, while the second, "spectrator" carboxylic acid group remains protonated. The observed energy difference between the symmetric, ν(s), and asymmetric, ν(as), stretch of the deprotonated carboxylic acid group suggests that the complexes are bound to the NC surface via a bridging mode. The results of DFT modeling are consistent with the experiment, showing that for the deprotonated carboxylic acid group the coupling to two Cd atoms via a bridging mode is the energetically most favorable mode of attachment for all nonequivalent NC surface sites and that the attachment of the protonated carboxylic acid is thermodynamically significantly less favorable.


Asunto(s)
Compuestos de Cadmio/química , Nanoestructuras/química , Compuestos Organometálicos/síntesis química , Piridinas/química , Teoría Cuántica , Rutenio/química , Compuestos de Selenio/química , Conformación Molecular , Compuestos Organometálicos/química , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
17.
Chromosome Res ; 18(6): 697-709, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20717716

RESUMEN

Chromosomal distribution of the Fat element that was isolated from bacterial artificial chromosome (BAC) end sequences of wheat chromosome 3B was studied in 45 species representing eight genera of Poaceae (Aegilops, Triticum, Agropyron, Elymus, Secale, Hordeum, Avena and Triticale) using fluorescence in situ hybridisation (FISH). The Fat sequence was not present in oats and in two barley species, Hordeum vulgare and Hordeum spontaneum, that we investigated. Only very low amounts of the Fat element were detected on the chromosomes of two other barley species, Hordeum geniculatum and Hordeum chilense, with different genome compositions. The chromosomes of other cereal species exhibited distinct hybridisation patterns with the Fat probe, and labelling intensity varied significantly depending on the species or genome. The highest amount of hybridisation was detected on chromosomes of the D genome of Aegilops and Triticum and on chromosomes of the S genome of Agropyron. Despite the bioinformatics analysis of several BAC clones that revealed the tandem organisation of the Fat element, hybridisation with the Fat probe produces uneven, diffuse signals in the proximal regions of chromosomes. In some of the genomes we investigated, however, it also forms distinct, sharp clusters in chromosome-specific positions, and the brightest fluorescence was always observed on group 4 chromosomes. Thus, the Fat element represents a new family of Triticeae-specific, highly repeated DNA elements with a clustered-dispersed distribution pattern. These elements may have first emerged in cereal genomes at the time of divergence of the genus Hordeum from the last common ancestor. During subsequent evolution, the amount and chromosomal distribution of the Fat element changed due to amplification, elimination and re-distribution of this sequence. Because the labelling patterns that we detected were highly specific, the Fat element can be used as an accessory probe in FISH analysis for chromosome identification and investigation of evolutionary processes at the chromosomal level.


Asunto(s)
Cromosomas de las Plantas/química , Genoma de Planta , Poaceae/genética , Cromosomas Artificiales Bacterianos/química , Cromosomas de las Plantas/genética , Marcadores Genéticos , Hibridación Fluorescente in Situ , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos
18.
Biology (Basel) ; 10(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34681081

RESUMEN

Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.

19.
Plants (Basel) ; 10(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064905

RESUMEN

Aegilops columnaris Zhuk. is tetraploid grass species (2n = 4x = 28, UcUcXcXc) closely related to Ae. neglecta and growing in Western Asia and a western part of the Fertile Crescent. Genetic diversity of Ae. columnaris was assessed using C-banding, FISH, nuclear and chloroplast (cp) DNA analyses, and gliadin electrophoresis. Cytogenetically Ae. columnaris was subdivided into two groups, C-I and C-II, showing different karyotype structure, C-banding, and FISH patterns. C-I group was more similar to Ae. neglecta. All types of markers revealed significant heterogeneity in C-II group, although group C-I was also polymorphic. Two chromosomal groups were consistent with plastogroups identified in a current study based on sequencing of three chloroplast intergenic spacer regions. The similarity of group C-I of Ae. columnaris with Ae. neglecta and their distinctness from C-II indicate that divergence of the C-I group was associated with minor genome modifications. Group C-II could emerge from C-I relatively recently, probably due to introgression from another Aegilops species followed by a reorganization of the parental genomes. Most C-II accessions were collected from a very narrow geographic region, and they might originate from a common ancestor. We suggest that the C-II group is at the initial stage of species divergence and undergoing an extensive speciation process.

20.
Genome ; 53(2): 125-37, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20140031

RESUMEN

The chromosome set of Avena macrostachya Balansa ex Coss. et Durieu was analyzed using C-banding and fluorescence in situ hybridization with 5S and 18S-5.8S-26S rRNA gene probes, and the results were compared with the C-genome diploid Avena L. species. The location of major nucleolar organizer regions and 5S rDNA sites on different chromosomes confirmed the affiliation of A. macrostachya with the C-genome group. However, the symmetric karyotype, the absence of "diffuse heterochromatin" and the location of large C-band complexes in proximal chromosome regions pointed to an isolated position of A. macrostachya from other Avena species. Based on the distribution of rDNA loci on the C-genome chromosomes of diploid and polyploid Avena species, we propose a model of the chromosome alterations that occurred during the evolution of oat species.


Asunto(s)
Avena/genética , Bandeo Cromosómico , Cromosomas de las Plantas , Diploidia , Genoma de Planta , ADN de Plantas , ADN Ribosómico/genética , Evolución Molecular , Hibridación Fluorescente in Situ , Cariotipificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA