Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(16): 28470-28478, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299041

RESUMEN

We demonstrate a real-time, reusable, and reversible integrated optical sensor for temperature monitoring within harsh environments. The sensor architecture combines the phase change property of chalcogenide glasses (ChG) with the high-density integration advantages of high index silicon waveguides. To demonstrate sensor feasibility, ChG composition Ge40S60, which is characterized by a sharp phase transition from amorphous to crystalline phase around 415 °C, is deposited over a 50 µm section of a single mode optical waveguide. The phase transition changes the behavior of Ge40S60 from a low loss to high loss material, thus significantly affecting the hybrid waveguide loss around the phase transition temperature. A transmission power drop of over 40dB in the crystalline phase compared to the amorphous phase is experimentally measured. Moreover, we recover the amorphous phase through the application of an electrical pulse, thus showing the reversible nature of our compact temperature sensor. Through integrating multiple compositions of ChG with well-defined phases transition temperatures over a silicon waveguide array, it is possible to determine, in real-time, the temperature evolution within a harsh environment, such as within a nuclear reactor cladding.

2.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668970

RESUMEN

We demonstrate a novel chalcogenide glass (ChG)-capped optical fiber temperature sensor capable of operating within harsh environment. The sensor architecture utilizes the heat-induced phase change (amorphous-to-crystalline) property of ChGs, which rapidly (80-100 ns) changes the optical properties of the material. The sensor response to temperature variation around the phase change of the ChG cap at the tip of the fiber provides abrupt changes in the reflected power intensity. This temperature is indicative of the temperature at the sensing node. We present the sensing performance of six different compositions of ChGs and a method to interpret the temperature profile between 440 ∘C and 600 ∘C in real-time using an array structure. The unique radiation-hardness property of ChGs makes the devices compatible with high-temperature and high-radiation environments, such as monitoring the cladding temperature of Light Water (LWR) or Sodium-cooled Fast (SFR) reactors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA