Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 38(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30814124

RESUMEN

Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Hematopoyesis , Proteína Homeótica Nanog/fisiología , Células Madre Pluripotentes/citología , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Células Madre Pluripotentes/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda/genética
2.
PLoS Genet ; 13(8): e1006985, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28846746

RESUMEN

Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.


Asunto(s)
Cromatina/genética , Desarrollo Embrionario/genética , Ventrículos Cardíacos/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Proteínas Represoras/genética , Animales , Factor de Unión a CCCTC , Diferenciación Celular/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ventrículos Cardíacos/embriología , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Organogénesis/genética , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional/genética
3.
Development ; 141(21): 4168-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25336743

RESUMEN

Arid3b, a member of the conserved ARID family of transcription factors, is essential for mouse embryonic development but its precise roles are poorly understood. Here, we show that Arid3b is expressed in the myocardium of the tubular heart and in second heart field progenitors. Arid3b-deficient embryos show cardiac abnormalities, including a notable shortening of the poles, absence of myocardial differentiation and altered patterning of the atrioventricular canal, which also lacks epithelial-to-mesenchymal transition. Proliferation and death of progenitors as well as early patterning of the heart appear normal. However, DiI labelling of second heart field progenitors revealed a defect in the addition of cells to the heart. RNA microarray analysis uncovered a set of differentially expressed genes in Arid3b-deficient tissues, including Bhlhb2, a regulator of cardiomyocyte differentiation, and Lims2, a gene involved in cell migration. Arid3b is thus required for heart development by regulating the motility and differentiation of heart progenitors. These findings identify Arid3b as a candidate gene involved in the aetiology of human congenital malformations.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Corazón/embriología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular/genética , Muerte Celular/fisiología , Proliferación Celular , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunoquímica , Hibridación in Situ , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Circ Res ; 115(4): 432-41, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24963028

RESUMEN

RATIONALE: The evolutionary conserved Tbx3/Tbx5 gene cluster encodes T-box transcription factors that play crucial roles in the development and homeostasis of the cardiac conduction system in human and mouse. Both genes are expressed in overlapping patterns and function in strictly tissue-specific and dose-dependent manners, yet, their regulation is poorly understood. OBJECTIVE: To analyze the mechanism underlying the complex regulation of the Tbx3/Tbx5 cluster. METHODS AND RESULTS: By probing the 3-dimensional architecture of the Tbx3/Tbx5 cluster using high-resolution circular chromosome conformation capture sequencing in vivo, we found that its regulatory landscape is in a preformed conformation similar in embryonic heart, limbs, and brain. Tbx3 and its flanking gene desert form a 1 Mbp loop between CCCTC-binding factor (CTCF)-binding sites that is separated from the neighboring Tbx5 loop. However, Ctcf inactivation did not result in transcriptional regulatory interaction between Tbx3 and Tbx5. Multiple sites within the Tbx3 locus contact the promoter, including sites corresponding to regions known to contain variations in the human genome influencing conduction. We identified an atrioventricular-specific enhancer and a pan-cardiac enhancer that contact the promoter and each other and synergize to activate transcription in the atrioventricular conduction system. CONCLUSIONS: We provide a high-resolution model of the 3-dimensional structure and function of the Tbx3/Tbx5 locus and show that the locus is organized in a preformed, permissive structure. The Tbx3 locus forms a CTCF-independent autonomous regulatory domain with multiple combinatorial regulatory elements that control the precise pattern of Tbx3 in the cardiac conduction system.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema de Conducción Cardíaco/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Región de Flanqueo 3' , Animales , Sitios de Unión , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Unión a CCCTC , Cromosomas Artificiales Bacterianos , ADN Circular/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sistema de Conducción Cardíaco/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Morfogénesis , Familia de Multigenes , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Transcripción Genética , Activación Transcripcional
5.
BMC Biol ; 13: 26, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25888893

RESUMEN

BACKGROUND: Recent genome-wide association studies have uncovered genomic loci that underlie an increased risk for atrial fibrillation, the major cardiac arrhythmia in humans. The most significant locus is located in a gene desert at 4q25, approximately 170 kilobases upstream of PITX2, which codes for a transcription factor involved in embryonic left-right asymmetry and cardiac development. However, how this genomic region functionally and structurally relates to PITX2 and atrial fibrillation is unknown. RESULTS: To characterise its function, we tested genomic fragments from 4q25 for transcriptional activity in a mouse atrial cardiomyocyte cell line and in transgenic mouse embryos, identifying a non-tissue-specific potentiator regulatory element. Chromosome conformation capture revealed that this region physically interacts with the promoter of the cardiac specific isoform of Pitx2. Surprisingly, this regulatory region also interacts with the promoter of the next neighbouring gene, Enpep, which we show to be expressed in regions of the developing mouse heart essential for cardiac electrical activity. CONCLUSIONS: Our data suggest that de-regulation of both PITX2 and ENPEP could contribute to an increased risk of atrial fibrillation in carriers of disease-associated variants, and show the challenges that we face in the functional analysis of genome-wide disease associations.


Asunto(s)
Fibrilación Atrial/genética , Cromosomas Humanos Par 4/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Glutamil Aminopeptidasa/genética , Proteínas de Homeodominio/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Animales , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Células HEK293 , Atrios Cardíacos/embriología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Humanos , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Factores de Riesgo , Proteína del Homeodomínio PITX2
6.
Genesis ; 52(9): 793-808, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24895317

RESUMEN

Fast and slow TnI are co-expressed in E11.5 embryos, and fast TnI is present from the very beginning of myogenesis. A novel green fluorescent protein (GFP) reporter mouse lines (FastTnI/GFP lines) that carry the primary and secondary enhancer elements of the mouse fast troponin I (fast TnI), in which reporter expression correlates precisely with distribution of the endogenous fTnI protein was generated. Using the FastTnI/GFP mouse model, we characterized the early myogenic events in mice, analyzing the migration of GFP+ myoblasts, and the formation of primary and secondary myotubes in transgenic embryos. Interestingly, we found that the two contractile fast and slow isoforms of TnI are expressed during the migration of myoblasts from the somites to the limbs and body wall, suggesting that both participate in these events. Since no sarcomeres are present in myoblasts, we speculate that the function of fast TnI in early myogenesis is, like Myosin and Tropomyosin, to participate in cell movement during the initial myogenic stages. genesis


Asunto(s)
Rastreo Celular/métodos , Regulación del Desarrollo de la Expresión Génica , Mioblastos/metabolismo , Troponina I/genética , Animales , Extremidades/embriología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Modelos Animales , Desarrollo de Músculos/genética , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Tropomiosina/genética , Tropomiosina/metabolismo , Troponina I/metabolismo
7.
Development ; 138(6): 1195-205, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307092

RESUMEN

The apical ectodermal ridge (AER) is a specialized epithelium located at the distal edge of the limb bud that directs outgrowth along the proximodistal axis. Although the molecular basis for its function is well known, the cellular mechanisms that lead to its maturation are not fully understood. Here, we show that Arid3b, a member of the ARID family of transcriptional regulators, is expressed in the AER in mouse and chick embryos, and that interference with its activity leads to aberrant AER development, in which normal structure is not achieved. This happens without alterations in cell numbers or gene expression in main signalling pathways. Cells that are defective in Arid3b show an abnormal distribution of the actin cytoskeleton and decreased motility in vitro. Moreover, movements of pre-AER cells and their contribution to the AER were defective in vivo in embryos with reduced Arid3b function. Our results show that Arid3b is involved in the regulation of cell motility and rearrangements that lead to AER maturation.


Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/fisiología , Ectodermo/embriología , Extremidades/embriología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ectodermo/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Morfogénesis/genética , Morfogénesis/fisiología
8.
Cell Rep ; 41(3): 111501, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36260992

RESUMEN

The eukaryotic genome is organized in 3D at different scales. This structure is driven and maintained by different chromatin states and by architectural factors, such as the zinc finger protein CTCF. Zygotic genome structure is established de novo after fertilization, but its impact during the first stages of mammalian development is unclear. We show that deletion of Ctcf in mouse embryos impairs the establishment of chromatin structure, but the first cell fate decision is unperturbed and embryos are viable until the late blastocyst. Furthermore, maternal CTCF is not necessary for development. Gene expression changes in metabolic and protein homeostasis programs that occur during the morula-to-blastocyst transition depend on CTCF. However, these changes do not correlate with disruption of chromatin but with binding of CTCF to the promoter of downregulated genes. Our results show that CTCF regulates both 3D genome organization and transcription during mouse preimplantation development, but as independent processes.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Ratones , Animales , Mórula/metabolismo , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Cromatina/metabolismo , Fertilización , Factor de Unión a CCCTC/metabolismo , Mamíferos/metabolismo
9.
Dev Cell ; 57(17): 2140-2150.e5, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36055247

RESUMEN

Normal organogenesis cannot be recapitulated in vitro for mammalian organs, unlike in species including Drosophila and zebrafish. Available 3D data in the form of ex vivo images only provide discrete snapshots of the development of an organ morphology. Here, we propose a computer-based approach to recreate its continuous evolution in time and space from a set of 3D volumetric images. Our method is based on the remapping of shape data into the space of the coefficients of a spherical harmonics expansion where a smooth interpolation over time is simpler. We tested our approach on mouse limb buds and embryonic hearts. A key advantage of this method is that the resulting 4D trajectory can take advantage of all the available data while also being able to interpolate well through time intervals for which there are little or no data. This allows for a quantitative, data-driven 4D description of mouse limb morphogenesis.


Asunto(s)
Imagenología Tridimensional , Organogénesis , Algoritmos , Animales , Imagenología Tridimensional/métodos , Mamíferos , Ratones
10.
Sci Adv ; 8(28): eabo3583, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857513

RESUMEN

Pluripotent cells are a transient population of the mammalian embryo dependent on transcription factors, such as OCT4 and NANOG, which maintain pluripotency while suppressing lineage specification. However, these factors are also expressed during early phases of differentiation, and their role in the transition from pluripotency to lineage specification is largely unknown. We found that pluripotency factors play a dual role in regulating key lineage specifiers, initially repressing their expression and later being required for their proper activation. We show that Oct4 is necessary for activation of HoxB genes during differentiation of embryonic stem cells and in the embryo. In addition, we show that the HoxB cluster is coordinately regulated by OCT4 binding sites located at the 3' end of the cluster. Our results show that core pluripotency factors are not limited to maintaining the precommitted epiblast but are also necessary for the proper deployment of subsequent developmental programs.

11.
Cell Rep ; 32(6): 108014, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783938

RESUMEN

Cohesin mediates sister chromatid cohesion and 3D genome folding. Two versions of the complex carrying STAG1 or STAG2 coexist in somatic vertebrate cells. STAG2 is commonly mutated in cancer, and germline mutations have been identified in cohesinopathy patients. To better understand the underlying pathogenic mechanisms, we report the consequences of Stag2 ablation in mice. STAG2 is largely dispensable in adults, and its tissue-wide inactivation does not lead to tumors but reduces fitness and affects both hematopoiesis and intestinal homeostasis. STAG2 is also dispensable for murine embryonic fibroblasts in vitro. In contrast, Stag2-null embryos die by mid-gestation and show global developmental delay and defective heart morphogenesis, most prominently in structures derived from secondary heart field progenitors. Both decreased proliferation and altered transcription of tissue-specific genes contribute to these defects. Our results provide compelling evidence on cell- and tissue-specific roles of different cohesin complexes and how their dysfunction contributes to disease.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Desarrollo Embrionario/fisiología , Animales , Homeostasis , Ratones , Ratones Noqueados , Cohesinas
12.
Biol Open ; 8(11)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791948

RESUMEN

Pluripotency is regulated by a network of transcription factors that maintain early embryonic cells in an undifferentiated state while allowing them to proliferate. NANOG is a critical factor for maintaining pluripotency and its role in primordial germ cell differentiation has been well described. However, Nanog is expressed during gastrulation across all the posterior epiblast, and only later in development is its expression restricted to primordial germ cells. In this work, we unveiled a previously unknown mechanism by which Nanog specifically represses genes involved in anterior epiblast lineage. Analysis of transcriptional data from both embryonic stem cells and gastrulating mouse embryos revealed Pou3f1 expression to be negatively correlated with that of Nanog during the early stages of differentiation. We have functionally demonstrated Pou3f1 to be a direct target of NANOG by using a dual transgene system for the controlled expression of Nanog Use of Nanog null ES cells further demonstrated a role for Nanog in repressing a subset of anterior neural genes. Deletion of a NANOG binding site (BS) located nine kilobases downstream of the transcription start site of Pou3f1 revealed this BS to have a specific role in the regionalization of the expression of this gene in the embryo. Our results indicate an active role of Nanog inhibiting neural regulatory networks by repressing Pou3f1 at the onset of gastrulation.This article has an associated First Person interview with the joint first authors of the paper.

13.
PLoS One ; 7(12): e52781, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23285181

RESUMEN

An often overlooked aspect of digit development is the special nature of the terminal phalanx, a specialized structure with characteristics distinct from other phalanges, for example the presence of ectodermal derivatives such as nails and claws. Here, we describe the unique ossification pattern of distal phalanges and characteristic gene expression in the digit tips of chick and duck embryos. Our results show that the distal phalanx of chick wing digit 1 is a genuine tip with a characteristic ossification pattern and expression of Bambi and Sp8; however, the terminal phalanx of digits 2* and 3 is not a genuine tip, and these are therefore truncated digits. Bambi and Sp8 expression in the chick wing provides a direct molecular assessment of digit identity changes after experimental manipulations of digit primordia. In contrast, digits 1 and 2 of the duck wing both possess true tips. Although chick wing-tip development was not rescued by application of Fgf8, this treatment induced the development of extra phalanges. Grafting experiments show that competence for tip formation, including nails, is latent in the interdigital tissue. Our results deepen understanding of the mechanisms of digit tip formation, highlighting its developmental autonomy and modular nature, with implications for digit reduction or loss during evolution. * Numbering of wing digits is 1, 2, 3 from anterior to posterior.


Asunto(s)
Tipificación del Cuerpo/genética , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Alas de Animales/embriología , Animales , Embrión de Pollo , Patos , Osteogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA