Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acc Chem Res ; 56(7): 867-877, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947463

RESUMEN

ConspectusEmploying semiconductor materials is a popular engineering method to harvest solar energy, which is widely investigated for photocatalysis (PC) and photoelectrocatalysis (PEC) that convert solar light to chemical energy. In particular, environmental photo(electro)catalysis has been extensively studied as a sustainable method for water treatment, air purification, and resource recovery. Environmental PC/PEC processes working in ambient conditions are initiated mainly through hole transfer to water (water oxidation) and electron transfer to dioxygen (O2 reduction) and the subsequent photoredox transformation of water and dioxygen serves as a base of various PC/PEC systems. Through the redox transformations, different products can be generated depending on the number of transferred electrons and holes. The single electron/hole transfer generates radical species and reactive oxygen species (ROS) which initiate the degradation/transformation of various pollutants in water and air, while the multicharge transfer can generate energy-rich chemicals (e.g., H2, H2O2). Therefore, understanding the characteristics of the photoredox reactions of water and dioxygen on the semiconductor surface is critically important in controlling the selectivity and efficiency of photoconversion processes.In this Account, we describe various environmental PC/PEC conversions with a particular focus on how the phototransformation of dioxygen and water is related to the overall processes occurring on diverse semiconductor materials. The activation of water or dioxygen can be controlled by modifying the properties of semiconductors, changing the kind of counterpart half-reaction and the experimental conditions. If water can be used as a ubiquitous reductant under solar irradiation, many kinds of reductive transformations can be carried out under ambient environmental conditions. For example, various toxic oxyanions (or metal ions) can be reductively transformed to harmless or less harmful species or useful chemicals/fuels can be synthesized under ambient conditions if water can provide electrons and protons via solar water oxidation. On the other hand, dioxygen can turn into reactive oxygen species (ROS) as a versatile oxidant or to a chemical like H2O2. There should be many more possibilities of utilizing the photoconversion of water and dioxygen for environmentally significant purposes, which are yet to be further developed and demonstrated. In this Account, we highlight the recent strategies and the novel functional materials for effective activation of water and dioxygen in environmental PC/PEC systems. Design of environmentally functional PC/PEC systems should be based on better understanding of water and dioxygen activation.

2.
Environ Res ; 180: 108651, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648071

RESUMEN

A hydrothermally synthesized rhodium/antimony co-doped TiO2 nanorod and titanate nanotube (RS-TONR/TNT) composite was prepared for removal of heavy metals and organic pollutants from water under visible light irradiation. The composite provides the dual function of simultaneous adsorption of heavy metal ions and enhanced degradation of dissolved organic compounds. Acid treatment transformed titanate nanotubes to irregular tubular structures distributed homogeneously over untransformed RS/TONRs. Synergistic removal and degradation was studied with various heavy metals, Orange (II) dye, and Bisphenol A. The adsorption capacity of the composite for heavy metal ions was Pb(II) > Cd(II) > Cu(II) > Zn(II). The adsorbed metals enhanced photocatalytic degradation of the organic pollutants, but Cu was most effective, with degradation exceeding 70% for the dye and 80% for Bisphenol A after 5 h of treatment. Photocatalytic activity was enhanced more by adsorption than photodeposition of Cu ions. A decrease in XRD rutile peak intensity with adsorbed metal indicates a change in crystallinity which may enhance photocatalytic activity. Thick and bulging nanostructures in FE-SEM images signify ion adsorption within titanate pores. BET analysis indicated titanate nanotubes with adsorbed metal are mesoporous but their tubular structure persists. XPS showed more active Cu 2p3/2 states under light, supporting an active role of Cu+ in photocatalytic ROS generation. Detection of ROS and Cu species using methanol, EDTA, pCBA, and benzoic acid probes provided strong evidence for degradation via a charge transfer mechanism. Findings demonstrate the potential of the RS-TONR/TNT composite for simultaneous removal of heavy metals and degradation of organic pollutants.


Asunto(s)
Metales Pesados , Trinitrotolueno , Contaminantes Químicos del Agua , Adsorción , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA