Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2208425120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669119

RESUMEN

Recurrent spillovers of α- and ß-coronaviruses (CoV) such as severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome-CoV, SARS-CoV-2, and possibly human CoV have caused serious morbidity and mortality worldwide. In this study, six receptor-binding domains (RBDs) derived from α- and ß-CoV that are considered to have originated from animals and cross-infected humans were linked to a heterotrimeric scaffold, proliferating cell nuclear antigen (PCNA) subunits, PCNA1, PCNA2, and PCNA3. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens, like jewels in a crown. Prime-boost immunizations with 6RBD-np in mice induced significantly high Ab titers against RBD antigens derived from α- and ß-CoV and increased interferon (IFN-γ) production, with full protection against the SARS-CoV-2 wild type and Delta challenges. The mosaic 6RBD-np has the potential to induce intergenus cross-reactivity and to be developed as a pan-CoV vaccine against future CoV spillovers.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Animales , Ratones , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/prevención & control , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
2.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682982

RESUMEN

Rapid diagnosis is essential for the control and prevention of H5 highly pathogenic avian influenza viruses (HPAIVs). However, highly sensitive and rapid diagnostic systems have shown limited performance due to specific antibody scarcity. In this study, two novel specific monoclonal antibodies (mAbs) for clade 2.3.4.4 H5Nx viruses were developed by using an immunogen from a reversed genetic influenza virus (RGV). These mAbs were combined with fluorescence europium nanoparticles and an optimized lysis buffer, which were further used for developing a fluorescent immunochromatographic rapid strip test (FICT) for early detection of H5Nx influenza viruses on chicken stool samples. The result indicates that the limit of detection (LoD) of the developed FICT was 40 HAU/mL for detection of HPAIV H5 clade 2.3.4.4b in spiked chicken stool samples, which corresponded to 4.78 × 104 RNA copies as obtained from real-time polymerase chain reaction (RT-PCR). An experimental challenge of chicken with H5N6 HPAIV is lethal for chicken three days post-infection (DPI). Interestingly, our FICT could detect H5N6 in stool samples at 2 DPI earlier, with 100% relative sensitivity in comparison with RT-PCR, and it showed 50% higher sensitivity than the traditional colloidal gold-based rapid diagnostic test using the same mAbs pair. In conclusion, our rapid diagnostic method can be utilized for the early detection of H5Nx 2.3.4.4 HPAIVs in avian fecal samples from poultry farms or for influenza surveillance in wild migratory birds.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Nanopartículas del Metal , Animales , Animales Salvajes , Pollos , Europio , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia
3.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055248

RESUMEN

Laninamivir (LAN) is a long-acting neuraminidase (NA) inhibitor (NAI) with a similar binding profile in the influenza NA enzyme active site as those of other NAIs, oseltamivir (OS), zanamivir (ZAN), and peramivir, and may share common resistance markers with these NAIs. We screened viruses with NA substitutions previously found during OS and ZAN selection in avian influenza viruses (AIVs) of the N3 to N9 subtypes for LAN susceptibility. Of the 72 NA substitutions, 19 conferred resistance to LAN, which ranged from 11.2- to 549.8-fold-decreased inhibitory activity over that of their parental viruses. Ten NA substitutions reduced the susceptibility to all four NAIs, whereas the remaining 26 substitutions yielded susceptibility to one or more NAIs. To determine whether the in vitro susceptibility of multi-NAI-resistant AIVs is associated with in vivo susceptibility, we infected BALB/c mice with recombinant AIVs with R292K (ma81K-N3R292K) or Q136K (ma81K-N8Q136K) NA substitutions, which impart in vitro susceptibility only to LAN or OS, respectively. Both ma81K-N3R292K and ma81K-N8Q136K virus-infected mice exhibited reduced weight loss, mortality, and lung viral titers when treated with their susceptible NAIs, confirming the in vitro susceptibility of these substitutions. Together, LAN resistance profiling of AIVs of a range of NA subtypes improves the understanding of NAI resistance mechanisms. Furthermore, the association of in vitro and in vivo NAI susceptibility indicates that our models are useful tools for monitoring NAI susceptibility of AIVs.IMPORTANCE The chemical structures of neuraminidase inhibitors (NAIs) possess similarities, but slight differences can result in variable susceptibility of avian influenza viruses (AIVs) carrying resistance-associated NA substitutions. Therefore, comprehensive susceptibility profiling of these substitutions in AIVs is critical for understanding the mechanism of antiviral resistance. In this study, we profiled resistance to the anti-influenza drug laninamivir in AIVs with substitutions known to impart resistance to other NAIs. We found 10 substitutions that conferred resistance to all four NAIs tested. On the other hand, we found that the remaining 26 NA substitutions were susceptible to at least one or more NAIs and showed for a small selection that in vitro data predicted in vivo behavior. Therefore, our findings highlight the usefulness of screening resistance markers in NA enzyme inhibition assays and animal models of AIV infections.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Guanidinas/farmacología , Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/genética , Piranos/farmacología , Ácidos Siálicos/farmacología , Animales , Aves , Farmacorresistencia Viral Múltiple/genética , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Gripe Aviar/virología , Ratones , Ratones Endogámicos BALB C , Mutación , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/clasificación , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología
4.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445529

RESUMEN

The circulation of the H9N2 virus results in significant economic losses in the poultry industry, and its zoonotic transmission highlights the need for a highly sensitive and rapid diagnostic and detection system for this virus. In this study, the performance of lateral flow test strips for a fluorescent immunochromatographic test (FICT) was optimized for the diagnosis of H9N2 virus-infected animal samples. The novel monoclonal antibodies (McAbs) against influenza A H9 viruses were developed, and two categories of McAbs with linear and conformational epitopes were compared for the performance of rapid diagnostic performance in the presence of feces sample at different time points (2, 4, and 6 days) post-infection (dpi). The limit of detection (LOD) of FICT and Kd values were comparable between linear and conformational epitope McAbs. However, superior performance of linear epitope McAbs pairs were confirmed by two animal studies, showing the better diagnostic performance showing 100% relative sensitivity in fecal samples at 6 dpi although it showed less than 80% sensitivity in early infection. Our results imply that the comparable performance of the linear epitope McAbs can potentially improve the diagnostic performance of FICT for H9N2 detection in feces samples. This highly sensitive rapid diagnostic method can be utilized in field studies of broiler poultry and wild birds.


Asunto(s)
Heces/virología , Fluorescencia , Subtipo H9N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/diagnóstico , Infecciones por Orthomyxoviridae/diagnóstico , Enfermedades de las Aves de Corral/diagnóstico , Animales , Pollos , Pruebas Diagnósticas de Rutina , Femenino , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/virología , Límite de Detección , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Enfermedades de las Aves de Corral/virología
5.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602610

RESUMEN

Neuraminidase (NA) inhibitors (NAIs) are widely used antiviral drugs for the treatment of humans with influenza virus infections. There have been widespread reports of NAI resistance among seasonal A(H1N1) viruses, and most have been identified in oseltamivir-exposed patients or those treated with other NAIs. Thus, monitoring and identifying NA markers conferring resistance to NAIs-particularly newly introduced treatments-are critical to the management of viral infections. Therefore, we screened and identified substitutions conferring resistance to laninamivir by enriching random mutations in the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus followed by deep sequencing of the laninamivir-selected variants. After the generation of single mutants possessing each identified mutation, two A(H1N1)pdm09 recombinants possessing novel NA gene substitutions (i.e., D199E and P458T) were shown to exhibit resistance to more than one NAI. Of note, mutants possessing P458T-which is located outside of the catalytic or framework residue of the NA active site-exhibited highly reduced inhibition by all four approved NAIs. Using MDCK cells, we observed that the in vitro viral replication of the two recombinants was lower than that of the wild type (WT). Additionally, in infected mice, decreased mortality and/or mean lung viral titers were observed in mutants compared with the WT. Reverse mutations to the WT were observed in lung homogenate samples from D199E-infected mice after 3 serial passages. Overall, the novel NA substitutions identified could possibly emerge in influenza A(H1N1)pdm09 viruses during laninamivir therapy and the viruses could have altered NAI susceptibility, but the compromised in vitro/in vivo viral fitness may limit viral spreading.IMPORTANCE With the widespread emergence of NAI-resistant influenza virus strains, continuous monitoring of mutations that confer antiviral resistance is needed. Laninamivir is the most recently approved NAI in several countries; few data exist related to the in vitro selection of viral mutations conferring resistance to laninamivir. Thus, we screened and identified substitutions conferring resistance to laninamivir by random mutagenesis of the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus strain followed by deep sequencing of the laninamivir-selected variants. We found several novel substitutions in NA (D199E and P458T) in an A(H1N1)pdm09 background which conferred resistance to NAIs and which had an impact on viral fitness. Our study highlights the importance of continued surveillance for potential antiviral-resistant variants and the development of alternative therapeutics.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Proteínas Virales/genética , Zanamivir/análogos & derivados , Animales , Antivirales/farmacología , Línea Celular , Perros , Inhibidores Enzimáticos/farmacología , Femenino , Guanidinas , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Piranos , Ácidos Siálicos , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Zanamivir/farmacología
6.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046464

RESUMEN

Several subtypes of avian influenza viruses (AIVs) are emerging as novel human pathogens, and the frequency of related infections has increased in recent years. Although neuraminidase (NA) inhibitors (NAIs) are the only class of antiviral drugs available for therapeutic intervention for AIV-infected patients, studies on NAI resistance among AIVs have been limited, and markers of resistance are poorly understood. Previously, we identified unique NAI resistance substitutions in AIVs of the N3, N7, and N9 NA subtypes. Here, we report profiles of NA substitutions that confer NAI resistance in AIVs of the N4, N5, N6, and N8 NA subtypes using gene-fragmented random mutagenesis. We generated libraries of mutant influenza viruses using reverse genetics (RG) and selected resistant variants in the presence of the NAIs oseltamivir carboxylate and zanamivir in MDCK cells. In addition, two substitutions, H274Y and R292K (N2 numbering), were introduced into each NA gene for comparison. We identified 37 amino acid substitutions within the NA gene, 16 of which (4 in N4, 4 in N5, 4 in N6, and 4 in N8) conferred resistance to NAIs (oseltamivir carboxylate, zanamivir, or peramivir) as determined using a fluorescence-based NA inhibition assay. Substitutions conferring NAI resistance were mainly categorized as either novel NA subtype specific (G/N147V/I, A246V, and I427L) or previously reported in other subtypes (E119A/D/V, Q136K, E276D, R292K, and R371K). Our results demonstrate that each NA subtype possesses unique NAI resistance markers, and knowledge of these substitutions in AIVs is important in facilitating antiviral susceptibility monitoring of NAI resistance in AIVs.IMPORTANCE The frequency of human infections with avian influenza viruses (AIVs) has increased in recent years. Despite the availability of vaccines, neuraminidase inhibitors (NAIs), as the only available class of drugs for AIVs in humans, have been constantly used for treatment, leading to the inevitable emergence of drug-resistant variants. To screen for substitutions conferring NAI resistance in AIVs of N4, N5, N6, and N8 NA subtypes, random mutations within the target gene were generated, and resistant viruses were selected from mutant libraries in the presence of individual drugs. We identified 16 NA substitutions conferring NAI resistance in the tested AIV subtypes; some are novel and subtype specific, and others have been previously reported in other subtypes. Our findings will contribute to an increased and more comprehensive understanding of the mechanisms of NAI-induced inhibition of influenza virus and help lead to the development of drugs that bind to alternative interaction motifs.


Asunto(s)
Farmacorresistencia Viral/genética , Gripe Aviar/virología , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/genética , Orthomyxoviridae/enzimología , Ácidos Carbocíclicos , Sustitución de Aminoácidos , Animales , Antivirales/farmacología , Aves , Ciclopentanos/farmacología , Perros , Inhibidores Enzimáticos , Guanidinas/farmacología , Humanos , Gripe Aviar/tratamiento farmacológico , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Mutagénesis , Neuraminidasa/química , Neuraminidasa/clasificación , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/genética , Oseltamivir/análogos & derivados , Oseltamivir/farmacología , Genética Inversa , Zanamivir/farmacología
7.
BMC Infect Dis ; 19(1): 676, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370782

RESUMEN

BACKGROUND: In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans. METHODS: We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses). RESULTS: We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%). CONCLUSIONS: Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment.


Asunto(s)
Colorimetría/métodos , Virus de la Influenza A/genética , Gripe Humana/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacciones Cruzadas , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Transcripción Reversa
8.
J Gen Virol ; 99(3): 292-302, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29493493

RESUMEN

The resistance of influenza viruses to neuraminidase (NA) inhibitors (NAIs; i.e. oseltamivir, zanamivir, peramivir and laninamivir) can be associated with several NA substitutions, with differing effects on viral fitness. To identify novel molecular markers conferring multi-NAI resistance, the NA gene of oseltamivir-resistant (H275Y, N1 numbering) 2009 pandemic influenza [A(H1N1)pdm09] virus was enriched with random mutations. This randomly mutated viral library was propagated in Madin-Darby canine kidney (MDCK) cells under zanamivir pressure and gave rise to additional changes within NA, including an I436N substitution located outside the NA enzyme active site. We generated four recombinant A(H1N1)pdm09 viruses containing either wild-type NA or NA with single (I436N or H275Y) or double (H275Y-I436N) substitutions. The double H275Y-I436N mutation significantly reduced inhibition by oseltamivir and peramivir and reduced inhibition by zanamivir and laninamivir. I436N alone reduced inhibition by all NAIs, suggesting that it is a multi-NAI resistance marker. I436N did not affect viral fitness in vitro or in a murine model; however, H275Y and I436N together had a negative impact on viral fitness. Further, I436N alone did not have an appreciable impact on viral replication in the upper respiratory tract or transmissibility in ferrets. However, the rg-H275Y-I436N double mutant transmitted less efficiently than either single mutant via the direct contact and respiratory droplet routes in ferrets. Overall, these results highlight the usefulness of a random mutagenesis approach for identifying potential molecular markers of resistance and the importance of I436N NA substitution in A(H1N1)pdm09 virus as a marker for multi-NAI resistance.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/virología , Neuraminidasa/genética , Proteínas Virales/genética , Sustitución de Aminoácidos , Animales , Embrión de Pollo , Perros , Femenino , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Virulencia
10.
J Virol ; 90(1): 616-23, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491154

RESUMEN

Coinfection of ferrets with H5N1 and pH1N1 viruses resulted in two predominate genotypes in the lungs containing surface genes of highly pathogenic avian influenza H5N1 virus in the backbone of pandemic H1N1 2009 (pH1N1). Compared to parental strains, these reassortants exhibited increased growth and virulence in vitro and in mice but failed to be transmitted indirectly to naive contact ferrets. Thus, this demonstrates a possible natural reassortment following coinfection as well as the pathogenicity of the potential reassortants.


Asunto(s)
Coinfección/virología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Animales , Coinfección/transmisión , Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa , Hurones , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/transmisión , Virulencia
11.
Clin Infect Dis ; 62(6): 755-60, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26679623

RESUMEN

BACKGROUND: Although Middle East Respiratory Syndrome coronavirus (MERS-CoV) is characterized by a risk of nosocomial transmission, the detailed mode of transmission and period of virus shedding from infected patients are poorly understood. The aims of this study were to investigate the potential role of environmental contamination by MERS-CoV in healthcare settings and to define the period of viable virus shedding from MERS patients. METHODS: We investigated environmental contamination from 4 patients in MERS-CoV units of 2 hospitals. MERS-CoV was detected by reverse transcription polymerase chain reaction (PCR) and viable virus was isolated by cultures. RESULTS: Many environmental surfaces of MERS patient rooms, including points frequently touched by patients or healthcare workers, were contaminated by MERS-CoV. Viral RNA was detected up to five days from environmental surfaces following the last positive PCR from patients' respiratory specimens. MERS-CoV RNA was detected in samples from anterooms, medical devices, and air-ventilating equipment. In addition, MERS-CoV was isolated from environmental objects such as bed sheets, bedrails, IV fluid hangers, and X-ray devices. During the late clinical phase of MERS, viable virus could be isolated in 3 of the 4 enrolled patients on day 18 to day 25 after symptom onset. CONCLUSIONS: Most of touchable surfaces in MERS units were contaminated by patients and health care workers and the viable virus could shed through respiratory secretion from clinically fully recovered patients. These results emphasize the need for strict environmental surface hygiene practices, and sufficient isolation period based on laboratory results rather than solely on clinical symptoms.


Asunto(s)
Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Contaminación de Equipos , Equipos y Suministros de Hospitales/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Esparcimiento de Virus , Adulto , Anciano , Ropa de Cama y Ropa Blanca/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/virología , Brotes de Enfermedades/prevención & control , Femenino , Fómites , Personal de Salud , Humanos , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , República de Corea/epidemiología , Análisis de Secuencia de ADN
12.
J Virol ; 89(1): 287-99, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320319

RESUMEN

UNLABELLED: Neuraminidase inhibitors (NAIs) have been widely used to control influenza virus infection, but their increased use could promote the global emergence of resistant variants. Although various mutations associated with NAI resistance have been identified, the amino acid substitutions that confer multidrug resistance with undiminished viral fitness remain poorly understood. We therefore screened a known mutation(s) that could confer multidrug resistance to the currently approved NAIs oseltamivir, zanamivir, and peramivir by assessing recombinant viruses with mutant NA-encoding genes (catalytic residues R152K and R292K, framework residues E119A/D/G, D198N, H274Y, and N294S) in the backbones of the 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza (HPAI) H5N1 viruses. Of the 14 single and double mutant viruses recovered in the backbone of pH1N1, four variants (E119D, E119A/D/G-H274Y) exhibited reduced inhibition by all of the NAIs and two variants (E119D and E119D-H274Y) retained the overall properties of gene stability, replicative efficiency, pathogenicity, and transmissibility in vitro and in vivo. Of the nine recombinant H5N1 viruses, four variants (E119D, E119A/D/G-H274Y) also showed reduced inhibition by all of the NAIs, though their overall viral fitness was impaired in vitro and/or in vivo. Thus, single mutations or certain combination of the established mutations could confer potential multidrug resistance on pH1N1 or HPAI H5N1 viruses. Our findings emphasize the urgency of developing alternative drugs against influenza virus infection. IMPORTANCE: There has been a widespread emergence of influenza virus strains with reduced susceptibility to neuraminidase inhibitors (NAIs). We screened multidrug-resistant viruses by studying the viral fitness of neuraminidase mutants in vitro and in vivo. We found that recombinant E119D and E119A/D/G/-H274Y mutant viruses demonstrated reduced inhibition by all of the NAIs tested in both the backbone of the 2009 H1N1 pandemic (pH1N1) and highly pathogenic avian influenza H5N1 viruses. Furthermore, E119D and E119D-H274Y mutants in the pH1N1 background maintained overall fitness properties in vitro and in vivo. Our study highlights the importance of vigilance and continued surveillance of potential NAI multidrug-resistant influenza virus variants, as well as the development of alternative therapeutics.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ácidos Carbocíclicos , Animales , Línea Celular , Ciclopentanos/farmacología , Inestabilidad Genómica , Guanidinas/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/enzimología , Cinética , Ratones , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Neuraminidasa/antagonistas & inhibidores , Oseltamivir/farmacología , Proteínas Virales/antagonistas & inhibidores , Virulencia , Replicación Viral , Zanamivir/farmacología
13.
Arch Virol ; 160(7): 1729-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25959557

RESUMEN

An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-ß activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Proteínas no Estructurales Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Pollos , Femenino , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética
15.
Proc Natl Acad Sci U S A ; 109(39): 15900-5, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019374

RESUMEN

Efficient worldwide swine surveillance for influenza A viruses is urgently needed; the emergence of a novel reassortant pandemic H1N1 (pH1N1) virus in 2009 demonstrated that swine can be the direct source of pandemic influenza and that the pandemic potential of viruses prevalent in swine populations must be monitored. We used the ferret model to assess the pathogenicity and transmissibility of predominant Korean triple-reassortant swine (TRSw) H1N2 and H3N2 influenza viruses genetically related to North American strains. Although most of the TRSw viruses were moderately pathogenic, one [A/Swine/Korea/1204/2009; Sw/1204 (H1N2)] was virulent in ferrets, causing death within 10 d of inoculation, and was efficiently transmitted to naive contact ferrets via respiratory droplets. Although molecular analysis did not reveal known virulence markers, the Sw/1204 virus acquired mutations in hemagglutinin (HA) (Asp-225-Gly) and neuraminidase (NA) (Ser-315-Asn) proteins during the single ferret passage. The contact-Sw/1204 virus became more virulent in mice, replicated efficiently in vitro, extensively infected human lung tissues ex vivo, and maintained its ability to replicate and transmit in swine. Reverse-genetics studies further indicated that the HA(225G) and NA(315N) substitutions contributed substantially in altering virulence and transmissibility. These findings support the continuing threat of some field TRSw viruses to human and animal health, reviving concerns on the capacity of pigs to create future pandemic viruses. Apart from warranting continued and enhanced global surveillance, this study also provides evidence on the emerging roles of HA(225G) and NA(315N) as potential virulence markers in mammals.


Asunto(s)
Hurones/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N2 del Virus de la Influenza A/patogenicidad , Mutación , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/veterinaria , Porcinos/virología , Factores de Virulencia/metabolismo , Animales , Línea Celular , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/metabolismo , Ratones , Infecciones por Orthomyxoviridae/genética , Enfermedades de los Porcinos , Factores de Virulencia/genética
16.
Am J Pathol ; 182(4): 1308-21, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23395090

RESUMEN

Differing sensitivity of influenza A viruses to antiviral effects of the Myxovirus resistance (Mx) protein implies varying global gene expression profiles in the host. The role of Mx protein during lethal avian influenza (AI) virus infection was examined using Mx1-deficient C57BL/6 (B6-Mx1(-/-)) and congenic Mx1-expressing (B6-Mx1(+/+)) mice infected with a virulent, mouse-adapted avian H5N2 Ab/Korea/ma81/07 (Av/ma81) virus. After infection, B6-Mx1(+/+) mice were completely protected from lethal AI-induced mortality, and exhibited attenuated clinical disease and reduced viral titers and pathology in the lungs, compared with B6-Mx1(-/-) mice. Transcriptional profiling of lung tissues revealed that most of the genes up-regulated after infection are involved in activation of the immune response and host defense. Notably, more abundant and sustained expression of cytokine/chemokine genes was observed up to 3 dpi in B6-Mx1(-/-) mice, and this was associated with excessive induction of cytokines and chemokines. Consequently, massive infiltration of macrophages/monocytes and granulocytes into lung resulted in severe viral pneumonia and potentially contributed to decreased survival of B6-Mx1(-/-) mice. Taken together, our data show that dysregulated gene transcriptional activity corresponded to persistent induction of cytokine/chemokines and recruitment of cytokine-producing cells that promote inflammation in B6-Mx1(-/-) mouse lungs. Thus, we provide additional evidence of the interplay of genetic, molecular, and cellular correlates governed by the Mx1 protein that critically determine disease outcome during lethal AI virus infection.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Inflamación/patología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Animales , Líquido del Lavado Bronquioalveolar , Pollos , Citocinas/farmacología , Perros , Proteínas de Unión al GTP/deficiencia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/complicaciones , Inflamación/virología , Subtipo H5N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Interferones/farmacología , Interleucinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Resistencia a Mixovirus , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/patología , Infecciones por Orthomyxoviridae/genética , Virulencia/efectos de los fármacos
17.
BMC Microbiol ; 14: 252, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25266911

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are known to regulate various biological processes, including expression of cellular gene and virus-induced inflammation. Recently, studies have indicated that some miRNAs could regulate influenza virus replication. Due to differential sensitivities of influenza A virus strains to different species (avian and mammalian), variations in host responses may be observed. Therefore, we investigated and compared the differences in global host miRNA expression in mouse lungs infected with wild type low pathogenicity A/Aquatic bird/Korea/w81/2005 (H5N2) (w81) or mouse-adapted virulent A/Aquatic bird /Korea/ma81/2007 (H5N2) (ma81) virus. RESULTS: Although the mice infected with ma81 exhibited much greater mortality than w81-infected mice, the parental w81 virus induced a higher number of differentially expressed miRNAs compared to the ma81 virus. Between these 2 viruses, a total of 27 and 20 miRNAs were commonly expressed at 1 dpi and 3 dpi, respectively. It is noteworthy that only 9 miRNAs (miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p, miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-3p, and miR-495-3p) were significantly upregulated in both lungs infected with either wild type w81 or the mouse-adapted ma81 strain at both time points. Notably, expression levels of miR-147-3p, miR-151-5p, miR-155-3p, and miR-223-3p were higher in the lungs of mice infected with the ma81 virus than those infected with the w81 virus. To identify potential roles of these miRNAs in regulating influenza virus replication, each group of mice was intranasally treated with each inhibitor of specifically targeting 4 miRNAs, and then challenged with 5 mouse lethal dose 50% (MLD50) of the virulent ma81 virus on the following day. Although the specific miRNA inhibitors could not completely attenuate mortality or reduce viral replication, the miR-151-5p- and miR-223-3p-inhibitors reduced mortality of inoculated mice to 70% and substantially delayed death. CONCLUSIONS: Our results suggest that the mammalian adaptation of avian influenza A virus results in a different miRNA expression pattern in lungs of virus-infected mice compared with its parental strain, and use of specific miRNA inhibitors to target genes associated with the immune response or cell death may affect virulence and virus replication.


Asunto(s)
Expresión Génica/fisiología , MicroARNs/genética , Infecciones por Orthomyxoviridae/genética , Animales , Perfilación de la Expresión Génica/métodos , Inflamación/genética , Inflamación/virología , Subtipo H5N2 del Virus de la Influenza A , Pulmón/virología , Ratones , Virulencia/genética , Replicación Viral/genética
18.
Emerg Microbes Infect ; 13(1): 2339949, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38572657

RESUMEN

Understanding the mammalian pathogenesis and interspecies transmission of HPAI H5N8 virus hinges on mapping its adaptive markers. We used deep sequencing to track these markers over five passages in murine lung tissue. Subsequently, we evaluated the growth, selection, and RNA load of eight recombinant viruses with mammalian adaptive markers. By leveraging an integrated non-linear regression model, we quantitatively determined the influence of these markers on growth, adaptation, and RNA expression in mammalian hosts. Furthermore, our findings revealed that the interplay of these markers can lead to synergistic, additive, or antagonistic effects when combined. The elucidation distance method then transformed these results into distinct values, facilitating the derivation of a risk score for each marker. In vivo tests affirmed the accuracy of scores. As more mutations were incorporated, the overall risk score of virus heightened, and the optimal interplay between markers became essential for risk augmentation. Our study provides a robust model to assess risk from adaptive markers of HPAI H5N8, guiding strategies against future influenza threats.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Ratones , Subtipo H5N8 del Virus de la Influenza A/genética , Pulmón , ARN , Mamíferos
19.
J Gen Virol ; 94(Pt 6): 1230-1235, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23486669

RESUMEN

The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.


Asunto(s)
Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Gripe Humana/virología , ARN Polimerasa I/genética , Genética Inversa/métodos , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , Células Vero
20.
Virol J ; 10: 104, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23551908

RESUMEN

BACKGROUND: Influenza vaccines are prepared annually based on global epidemiological surveillance data. However, since there is no method by which to predict the influenza strain that will cause the next pandemic, the demand to develop new vaccination strategies with broad cross-reactivity against influenza viruses are clearly important. The ectodomain of the influenza M2 protein (M2e) is an attractive target for developing a vaccine with broad cross-reactivity. For these reasons, we investigated the efficacy of an inactivated H9N2 virus vaccine (a-H9N2) mixed with M2e (1xM2e or 4xM2e) proteins expressed in Escherichia coli, which contains the consensus of sequence the extracellular domain of matrix 2 (M2e) of A/chicken/Vietnam/27262/09 (H5N1) avian influenza virus, and investigated its humoral immune response and cross-protection against influenza A viruses. RESULTS: Mice were intramuscularly immunized with a-H9N2, 1xM2e alone, 4xM2e alone, a-H9N2/1xM2e, or a-H9N2/4xM2e. Three weeks post-vaccination, mice were challenged with lethal homologous (A/ chicken /Korea/ma163/04, H9N2) or heterosubtypic virus (A/Philippines/2/82, H3N2 and A/aquatic bird/Korea/maW81/05, H5N2). Our studies demonstrate that the survival of mice immunized with a-H9N2/1xM2e or with a-H9N2/4xM2e (100% survival) was significantly higher than that of mouse-adapted H9N2 virus-infected mice vaccinated with 1xM2e alone or with 4xM2e alone (0% survival). We also evaluated the protective efficacy of the M2e + vaccine against infection with mouse-adapted H5N2 influenza virus. Protection from death in the control group (0% survival) was similar to that of the 1×M2e alone and 4xM2e alone-vaccinated groups (0% survival). Only 40% of mice vaccinated with vaccine alone survived challenge with H5N2, while the a-H9N2/1×M2e and a-H9N2/4×M2e groups showed 80% and 100% survival following mouse-adapted H5N2 challenge, respectively. We also examined cross-protection against human H3N2 virus and found that the a-H9N2/1×M2e group displayed partial cross-protection against H3N2 (40% survival), whereas vaccine alone, 1×M2e alone, 4×M2e alone, or H9N2/1×M2e groups showed incomplete protection (0% survival) in response to challenge with a lethal dose of human H3N2 virus. CONCLUSIONS: Taken together, these results suggest that prokaryote-expressed M2e protein improved inactivated H9N2 virus vaccine efficacy and achieved cross-protection against lethal influenza A virus infection in mice.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Proteínas de la Matriz Viral/inmunología , Animales , Anticuerpos Antivirales/sangre , Protección Cruzada , Reacciones Cruzadas , Femenino , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Análisis de Supervivencia , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA