Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Biol ; 17(5): 055002, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32217822

RESUMEN

Integral feedback control is commonly used in mechanical and electrical systems to achieve zero steady-state error following an external disturbance. Equivalently, in biological systems, a property known as robust perfect adaptation guarantees robustness to environmental perturbations and return to the pre-disturbance state. Previously, Briat et al proposed a biomolecular design for integral feedback control (robust perfect adaptation) called the antithetic feedback motif. The antithetic feedback controller uses the sequestration binding reaction of two biochemical species to record the integral of the error between the current and the desired output of the network it controls. The antithetic feedback motif has been successfully built using synthetic components in vivo in Escherichia coli and Saccharomyces cerevisiae cells. However, these previous synthetic implementations of antithetic feedback have not produced perfect integral feedback control due to the degradation and dilution of the two controller species. Furthermore, previous theoretical results have cautioned that integral control can only be achieved under stability conditions that not all antithetic feedback motifs necessarily fulfill. In this paper, we study how to design antithetic feedback motifs that simultaneously achieve good stability and small steady-state error properties, even as the controller species are degraded and diluted. We provide simple tuning guidelines to achieve flexible and practical synthetic biological implementations of antithetic feedback control. We use several tools and metrics from control theory to design antithetic feedback networks, paving the path for the systematic design of synthetic biological controllers.


Asunto(s)
Retroalimentación Fisiológica , Adaptación Fisiológica , Redes Reguladoras de Genes , Modelos Biológicos , Biología Sintética
2.
Physica D ; 241(21): 1782-1788, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23087494

RESUMEN

Many biological and physical systems exhibit population-density dependent transitions to synchronized oscillations in a process often termed "dynamical quorum sensing". Synchronization frequently arises through chemical communication via signaling molecules distributed through an external medium. We study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-cycle oscillators diffusively coupled through a common medium. We show that this model exhibits a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of coherent population-level oscillations, including a novel mechanism arising from effective time-delays introduced by the external medium. We derive a single pair of analytic equations that allow us to calculate phase boundaries as a function of population density and show that the model reproduces many of the qualitative features of recent experiments on BZ catalytic particles as well as synthetically engineered bacteria.

3.
J Phys Chem B ; 123(10): 2217-2234, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30777763

RESUMEN

The finite state projection (FSP) approach to solving the chemical master equation has enabled successful inference of discrete stochastic models to predict single-cell gene regulation dynamics. Unfortunately, the FSP approach is highly computationally intensive for all but the simplest models, an issue that is highly problematic when parameter inference and uncertainty quantification takes enormous numbers of parameter evaluations. To address this issue, we propose two new computational methods for the Bayesian inference of stochastic gene expression parameters given single-cell experiments. We formulate and verify an adaptive delayed acceptance Metropolis-Hastings (ADAMH) algorithm to utilize with reduced Krylov-basis projections of the FSP. We then introduce an extension of the ADAMH into a hybrid scheme that consists of an initial phase to construct a reduced model and a faster second phase to sample from the approximate posterior distribution determined by the constructed model. We test and compare both algorithms to an adaptive Metropolis algorithm with full FSP-based likelihood evaluations on three example models and simulated data to show that the new ADAMH variants achieve substantial speedup in comparison to the full FSP approach. By reducing the computational costs of parameter estimation, we expect the ADAMH approach to enable efficient data-driven estimation for more complex gene regulation models.


Asunto(s)
Expresión Génica , Modelos Biológicos , Modelos Químicos , Algoritmos , Teorema de Bayes , Fenómenos Bioquímicos , Simulación por Computador , Procesos Estocásticos
4.
Cell Syst ; 9(1): 49-63.e16, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31279505

RESUMEN

Feedback regulation is pervasive in biology at both the organismal and cellular level. In this article, we explore the properties of a particular biomolecular feedback mechanism called antithetic integral feedback, which can be implemented using the binding of two molecules. Our work develops an analytic framework for understanding the hard limits, performance tradeoffs, and architectural properties of this simple model of biological feedback control. Using tools from control theory, we show that there are simple parametric relationships that determine both the stability and the performance of these systems in terms of speed, robustness, steady-state error, and leakiness. These findings yield a holistic understanding of the behavior of antithetic integral feedback and contribute to a more general theory of biological control systems.


Asunto(s)
Retroalimentación Fisiológica , Modelos Biológicos , Biología de Sistemas/métodos , Animales , Homeostasis , Humanos , Biología Sintética
5.
J R Soc Interface ; 14(130)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28566513

RESUMEN

Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Químicos , Transducción de Señal/fisiología , Algoritmos , Fenómenos Fisiológicos Celulares , Simulación por Computador , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA