Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2145, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273071

RESUMEN

Ductular reactive (DR) cells exacerbate cholestatic liver injury and fibrosis. Herein, we posit that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) emanates from recruited macrophages and restrains DR cell expansion, thereby limiting cholestatic liver injury. Wild type (WT), Trailfl/fl and myeloid-specific Trail deleted (TrailΔmye) C57BL/6 mice were exposed to DDC diet-induced cholestatic liver injury, which induced hepatomegaly and liver injury as compared to control diet-fed mice. However, parameters of liver injury, fibrosis, and inflammation were all increased in the TrailΔmye mice as compared to the WT and Trailfl/fl mice. High dimensional mass cytometry indicated that cholestasis resulted in increased hepatic recruitment of subsets of macrophages and neutrophils in the TrailΔmye mice. Spatial transcriptomics analysis revealed that the PanCK+ cholangiocytes from TrailΔmye mice had increased expression of the known myeloid attractants S100a8, Cxcl5, Cx3cl1, and Cxcl1. Additionally, in situ hybridization of Cxcl1, a potent neutrophil chemoattractant, demonstrated an increased expression in CK19+ cholangiocytes of TrailΔmye mice. Collectively, these data suggest that TRAIL from myeloid cells, particularly macrophages, restrains a subset of DR cells (i.e., Cxcl1 positive cells), limiting liver inflammation and fibrosis. Reprogramming macrophages to express TRAIL may be salutary in cholestasis.


Asunto(s)
Colestasis , Hígado , Animales , Ratones , Apoptosis/genética , Colestasis/metabolismo , Fibrosis , Ligandos , Hígado/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
2.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167854

RESUMEN

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Rejuvenecimiento , Envejecimiento , Animales , Encéfalo/metabolismo , Senescencia Celular/fisiología , Factores Quimiotácticos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA