Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677517

RESUMEN

Neuropeptides are the largest group of chemical signals in the brain. More than 100 different neuropeptides modulate various brain functions and their dysregulation has been associated with neurological disorders. Neuropeptides are packed into dense core vesicles (DCVs), which fuse with the plasma membrane in a calcium-dependent manner. Here, we describe a novel high-throughput assay for DCV exocytosis using a chimera of Nanoluc luciferase and the DCV-cargo neuropeptide Y (NPY). The NPY-Nanoluc reporter colocalized with endogenous DCV markers in all neurons with little mislocalization to other cellular compartments. NPY-Nanoluc reported DCV exocytosis in both rodent and induced pluripotent stem cell-derived human neurons, with similar depolarization, Ca2+, RAB3, and STXBP1/MUNC18 dependence as low-throughput assays. Moreover, NPY-Nanoluc accurately reported modulation of DCV exocytosis by known modulators diacylglycerol analog and Ca2+ channel blocker and showed a higher assay sensitivity than a widely used single-cell low-throughput assay. Lastly, we showed that Nanoluc coupled to other secretory markers reports on constitutive secretion. In conclusion, the NPY-Nanoluc is a sensitive reporter of DCV exocytosis in mammalian neurons, suitable for pharmacological and genomic screening for DCV exocytosis genes and for mechanism-based treatments for central nervous system disorders.


Asunto(s)
Exocitosis , Ensayos Analíticos de Alto Rendimiento , Neuronas , Neuropéptido Y , Animales , Humanos , Neuronas/metabolismo , Neuronas/citología , Ratones , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Vesículas Secretoras/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
2.
J Neurosci ; 43(45): 7616-7625, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37852790

RESUMEN

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.


Asunto(s)
Vesículas de Núcleo Denso , Neuropéptidos , Animales , Humanos , Vesículas Secretoras/metabolismo , Neuronas/fisiología , Hipocampo/fisiología , Neuropéptidos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA