Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 39(1): 2302920, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38221785

RESUMEN

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIß isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Antineoplásicos/farmacología , Antineoplásicos/química , Carbazoles/farmacología , Carbazoles/química , ADN-Topoisomerasas de Tipo II , Apoptosis
2.
Chemistry ; 29(55): e202300970, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37332024

RESUMEN

In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells. We have shown in vitro within SPR experiments that our modified peptide PEP1 molecule interacts with TRF1, presumably at the site originally occupied by the TIN2 protein. Disturbance of the shelterin complex by studied molecule may not in short term lead to cytotoxic effects, however blocking TRF1-TIN2 resulted in cellular senescence in cellular breast cancer lines used as a cancer model. Thus, our compounds appeared useful as starting model compounds for precise blockage of TRF proteins.


Asunto(s)
Complejo Shelterina , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Péptidos/farmacología
3.
J Cell Mol Med ; 26(14): 3950-3964, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701366

RESUMEN

The acridanone derivative 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) has been described as a potent inhibitor of cancer cell growth. Its mechanism of action in in vitro conditions was attributed, among others, to its ability to bind and stabilize the microtubule network and subsequently exhibit its tumour-suppressive effects in synergy with paclitaxel (PTX). Therefore, the objective of the present study was to analyse the effects of the combined treatment of C-1305 and PTX in vivo. In addition, considering the results of previous genomic analyses, particular attention was given to the effects of this treatment on tumour angiogenesis. Treatment with C-1305 revealed antitumor effect in A549 lung cancer cells, and combined treatment with PTX showed tendency to anticancer activity in HCT116 colon cancer xenografts. It also improved tumour blood perfusion in both tumour models. The plasma level of CCL2 was increased and that of PDGF was decreased after combined treatment with C-1305 and PTX. The experimental results showed that the levels of FGF1, TGF-ß and Ang-4 decreased, whereas the levels of ERK1/2 and Akt phosphorylation increased in HCT116 tumour tissue following combined treatment with both drugs. The results of in vitro capillary-like structure formation assay demonstrated the inhibiting effect of C-1305 on this process. Although previous in vitro and in vivo studies suggested a positive effect of C-1305 on cancer cells, combined treatment of HCT116 human colon and A549 lung cancer cells with both PTX and C-1305 in vivo showed that the antitumor activity was restricted and associated with the modulation of tumour angiogenesis.


Asunto(s)
Neoplasias del Colon , Neoplasias Pulmonares , Acridinas , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Xenoinjertos , Humanos , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Triazoles
4.
PLoS Comput Biol ; 17(10): e1009454, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34613958

RESUMEN

The current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global "one health" perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an "alternating access" protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes.


Asunto(s)
Antiportadores , Proteínas de Escherichia coli , Transporte Iónico/fisiología , Antiportadores/química , Antiportadores/genética , Antiportadores/metabolismo , Biología Computacional , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Simulación de Dinámica Molecular , Protones , Termodinámica
5.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563554

RESUMEN

The molecular mechanisms of telomerase reverse transcriptase (TERT) upregulation in breast cancer (BC) are complex. We compared genetic variability within TERT and telomere length with the clinical data of patients with BC. Additionally, we assessed the expression of the TERT, MYC, TP53 and SP1 genes in BC patients and in BC organoids (3D cell cultures obtained from breast cancer tissues). We observed the same correlation in the blood of BC patients and in BC organoids between the expression of TERT and TP53. Only in BC patients was a correlation found between the expression of the TERT and MYC genes and between TP53 and MYC. We found associations between TERT genotypes (rs2735940 and rs10069690) and TP53 expression and telomere length. BC patients with the TT genotype rs2735940 have a shorter telomere length, but patients with A allele rs10069690 have a longer telomere length. BC patients with a short allele VNTR-MNS16A showed higher expression of the SP1 and had a longer telomere. Our results bring new insight into the regulation of TERT, MYC, TP53 and SP1 gene expression related to TERT genetic variability and telomere length. Our study also showed for the first time a similar relationship in the expression of the above genes in BC patients and in BC organoids. These findings suggest that TERT genetic variability, expression and telomere length might be useful biomarkers for BC, but their prognostic value may vary depending on the clinical parameters of BC patients and tumor aggressiveness.


Asunto(s)
Neoplasias de la Mama , Telomerasa , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Genes myc , Humanos , Polimorfismo de Nucleótido Simple , Factor de Transcripción Sp1/genética , Telomerasa/genética , Telómero/patología , Proteína p53 Supresora de Tumor/genética
6.
Cell Mol Biol Lett ; 26(1): 11, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33730996

RESUMEN

Inositol requiring enzyme 1 alpha (IRE1α) is one of three signaling sensors in the unfolding protein response (UPR) that alleviates endoplasmic reticulum (ER) stress in cells and functions to promote cell survival. During conditions of irrevocable stress, proapoptotic gene expression is induced to promote cell death. One of the three signaling stressors, IRE1α is an serine/threonine-protein kinase/endoribonuclease (RNase) that promotes nonconventional splicing of XBP1 mRNA that is translated to spliced XBP1 (XBP1s), an active prosurvival transcription factor. Interestingly, elevated IRE1α and XBP1s are both associated with poor cancer survival and drug resistance. In this study, we used next-generation sequencing analyses to demonstrate that triazoloacridone C-1305, a microtubule stabilizing agent that also has topoisomerase II inhibitory activity, dramatically decreases XBP1s mRNA levels and protein production during ER stress conditions, suggesting that C-1305 does this by decreasing IRE1α's endonuclease activity.


Asunto(s)
Acridinas/farmacología , Endorribonucleasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Empalme del ARN/genética , Triazoles/farmacología , Proteína 1 de Unión a la X-Box/genética , Acridinas/química , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Himecromona/análogos & derivados , Himecromona/química , Himecromona/farmacología , Empalme del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triazoles/química
7.
Microsc Microanal ; : 1-5, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34169809

RESUMEN

Composite, helical nanostructures formed using cooperative interactions of liquid crystals and Au nanoparticles were studied using a scanning transmission electron microscopy (STEM) mode. The investigated helical assemblies exhibit long-range hierarchical order across length scales, as a result of the crystallization (freezing) directed growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. Here, STEM methods were used to reproduce the 3D structure of the Au nanoparticle double helix.

8.
Chem Biodivers ; 18(1): e2000733, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33236468

RESUMEN

Currently available chemotherapeutic treatments for blood cancers (leukemia) usually have strong side effects. More selective, efficient, and less toxic anticancer agents are needed. We synthesized seven, new, optically pure (12aS)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione derivatives and examined their cytotoxicity towards eight cancer cell lines, including urinary bladder (TCC-SUP, UM-UC-3, KU-19-9), colon (LoVo), and breast (MCF-7, MDA-MB-231) cancer representatives, as well as two leukemic cell lines (MV-4-11, CCRF-CEM) and normal murine fibroblasts (Balb/3T3) as reference cell line. Three of the seven newly-obtained compounds ((12aS)-8-bromo-2-(3-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione, (12aS)-8,9-dimethoxy-2-(4-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione and (12aS)-8-nitro-2-(4-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione, showed enhanced activity and selectivity toward the leukemic MV-4-11 cell lines when compared to our previously reported compounds, with IC50 values in the range of 2.9-5.6 µM. Additionally, (12aS)-9-nitro-2-(4-phenylbenzoyl)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione exhibited a strong cytotoxic effect against the leukemic CCRF-CEM (IC50 =6.1 µM) and MV-4-11 (IC50 =11.0 µM) cell lines, a moderate cytotoxic effect toward other tumor lines (IC50 =31.8-55.0 µM) and very weak cytotoxic effect toward the Balb/3T3 reference cell lines. Selected compounds were further evaluated for their potential to induce apoptotic cell death in MV-4-11 cells by measuring caspase-3 activity. We also established the crystal structure of three products and investigated the effect of 22 derivatives of 1,3,4,12a-tetrahydropyrazino[2,1-c][1,4],12(2H,11H)-dione on the activity of the cancer-associated enzyme autotaxin. All compounds proved to be weak inhibitors of autotaxin, although some (R) and (S) enantiomers had Ki values of 10-19 µM. The obtained results showed that the tested compounds exhibited a selective antileukemic effect, which appeared not to be related directly to autotaxin. Molecular targets responsible for this effect remain to be identified. The newly obtained compounds can be used in the search for new, selective anticancer therapies.


Asunto(s)
Antineoplásicos/química , Benzodiazepinas/química , Diseño de Fármacos , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacología , Sitios de Unión , Dominio Catalítico , Línea Celular , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Conformación Molecular , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
9.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066491

RESUMEN

Poor efficiency of chemotherapeutics in the eradication of Cancer Stem Cells (CSCs) has been driving the search for more active and specific compounds. In this work, we show how cell density-dependent stage culture profiles can be used in drug development workflows to achieve more robust drug activity (IC50 and EC50) results. Using flow cytometry and light microscopy, we characterized the cytological stage profiles of the HL-60-, A-549-, and HEK-293-derived sublines with a focus on their primitive cell content. We then used a range of cytotoxic substances-C-123, bortezomib, idarubicin, C-1305, doxorubicin, DMSO, and ethanol-to highlight typical density-related issues accompanying drug activity determination. We also showed that drug EC50 and selectivity indices normalized to primitive cell content are more accurate activity measurements. We tested our approach by calculating the corrected selectivity index of a novel chemotherapeutic candidate, C-123. Overall, our study highlights the usefulness of accounting for primitive cell fractions in the assessment of drug efficiency.


Asunto(s)
Antineoplásicos/farmacología , Recuento de Células , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Humanos , Concentración 50 Inhibidora , Estadificación de Neoplasias , Especies Reactivas de Oxígeno/metabolismo
10.
Small ; 15(37): e1902807, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31348618

RESUMEN

Robust synthesis of large-scale self-assembled nanostructures with long-range organization and a prominent response to external stimuli is critical to their application in functional plasmonics. Here, the first example of a material made of liquid crystalline nanoparticles which exhibits UV-light responsive surface plasmon resonance in a condensed state is presented. To obtain the material, metal cores are grafted with two types of organic ligands. A promesogenic derivative softens the system and induces rich liquid crystal phase polymorphism. Second, an azobenzene derivative endows nanoparticles with photoresponsive properties. It is shown that nanoparticles covered with a mixture of these ligands assemble into long-range ordered structures which exhibit a novel dual-responsivity. The structure and plasmonic properties of the assemblies can be controlled by a change in temperature as well as by UV-light irradiation. These results present an efficient way to obtain bulk quantities of self-assembled nanostructured materials with stability that is unattainable by alternative methods such as matrix-assisted or DNA-mediated organization.


Asunto(s)
Oro/química , Cristales Líquidos/química , Nanopartículas del Metal/química , Nanoestructuras/química , Nanotecnología/métodos , Resonancia por Plasmón de Superficie
11.
Arch Biochem Biophys ; 642: 52-62, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29428209

RESUMEN

The telomere repeat binding-factor 1 and 2 (TRF1 and TRF2) proteins of the shelterin complex bind to duplex telomeric DNA as homodimers, and the homodimerization is mediated by their TRFH (TRF-homology) domains. We performed molecular dynamic (MD) simulations of the dimer forms of TRF1TRFH and TRF2TRFH in the presence/absence of the TIN2TBM (TIN2, TRF-interacting nuclear protein 2, TBM, TRF-binding motif) peptide. The MD results suggest that TIN2TBM is necessary to ensure the stability of TRF1TRFH homodimer but not the TRF2TRFH homodimer. In TRF1-TIN2-TRF2 complex, the peptide enhances the protein-protein interactions to yield a stable heterodimer. Both monomers in TRF1TRFH homodimer interact almost equally with the peptide, whereas in TRF2TRFH homodimer, monomer TRF2TRFH(M1) exhibits more dominant interactions than the TRF2TRFH(M2). The common residues of TRF1/2TRFH(M1) that form interactions with TIN2TBM in all peptide-bound systems originate from the H3 (helix) and L3 (loop) regions. Additionally, in the homodimer systems, residues of TRF1/2TRFH(M2) also interact with the peptide. The residue pair E71-K213 is responsible for different conformations of TRF1TRFH homodimers; specifically, this residue pair enhances the protein-peptide/protein interactions in peptide-bound/unbound systems, respectively. TRF1TRFH and TRF2TRFH proteins have a conserved but different interface responsible for the protein-protein/peptide interactions that exist in the corresponding dimers.


Asunto(s)
Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Dimerización , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/química
12.
Bioorg Med Chem Lett ; 28(4): 618-625, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29395971

RESUMEN

A series of optically pure (R)- and (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives was designed and synthesized as novel anthramycin analogues in a three-step, one-pot procedure, and tested for their antiproliferative activity on nine following cell lines: MV-4-11, UMUC-3, MDA-MB-231, MCF7, LoVo, HT-29, A-549, A2780 and BALB/3T3. The key structural features responsible for exhibition of cytotoxic effect were determined: the (S)-configuration of chiral center and the presence of hydrophobic 4-biphenyl substituent in the side chain. Introduction of bromine atom into the 8 position (8g) or substitution of dilactam ring with benzyl group (8m) further improved the activity and selectivity of investigated compounds. Among others, compound 8g exhibited selective cytotoxic effect against MV-4-11 (IC50 = 8.7 µM) and HT-29 (IC50 = 17.8 µM) cell lines, while 8m showed noticeable anticancer activity against MV-4-11 (IC50 = 10.8 µM) and LoVo (IC50 = 11.0 µM) cell lines. The cell cycle arrest in G1/S checkpoint and apoptosis associated with overproduction of reactive oxygen species was also observed for 8e and 8m.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzodiazepinonas/farmacología , Pirazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/toxicidad , Benzodiazepinonas/síntesis química , Benzodiazepinonas/química , Benzodiazepinonas/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Leucemia/tratamiento farmacológico , Ratones , Pirazinas/síntesis química , Pirazinas/química , Pirazinas/toxicidad , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
13.
Biotechnol Appl Biochem ; 65(4): 594-607, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29405478

RESUMEN

HIV-1 integrase (IN) is crucial for integration of viral DNA into the host genome and a promising target in development of antiretroviral inhibitors. In this work, six new compounds were designed by linking the structures of two different class of HIV-1 IN inhibitors (active site binders and allosteric IN inhibitors (ALLINIs)). Among newly designed compounds, INRAT10b was found most potent HIV-1 IN inhibitor considering different docking results. To further validate protein-ligand interactions obtained from dockings, molecular dynamics simulations were performed for inhibitor raltegravir and INRAT10b placed either at active site or allosteric site of HIV-1 IN (monomer or dimer). Results suggest that both raltegravir and INRAT10b were interacting with residue Gln62, Gly140, Ile141, and Ser147. However, INRAT10b interacts better with high H-bond occupancy, which can explain the strong binding affinity of INRAT10b than raltegravir with the HIV-1 IN protein. Subdomains rearrangements in HIV-1 IN suggest that the C-terminal and catalytic core domains develop their closeness in the presence of ligand. More significantly, the newly designed derivatives represent novel compounds targeting catalytic site and C-terminal (protein-protein interaction) domains simultaneously. And we also propose INRAT10b as a promising lead compound for the development of potent HIV-1 IN inhibitors.


Asunto(s)
Diseño de Fármacos , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Oxadiazoles/farmacología , Pirimidinonas/farmacología , Dominio Catalítico/efectos de los fármacos , Inhibidores de Integrasa VIH/síntesis química , Inhibidores de Integrasa VIH/química , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestinos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Pirimidinonas/síntesis química , Pirimidinonas/química , Estados Unidos , United States Food and Drug Administration
14.
Eur Biophys J ; 46(2): 171-187, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27450562

RESUMEN

Shelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate the molecular basis of these interactions, we employed molecular dynamics (MD) simulations of TRF1TRFH-TIN2TBM and TRF2TRFH-TIN2TBM/ApolloTBM complexes and of the isolated proteins. MD enabled a structural and dynamical comparison of protein-peptide complexes including H-bond interactions and interfacial residues that may regulate TRF protein binding to the given peptides, especially focusing on interactions described in crystallographic data. Residues with a selective function in both TRF1TRFH and TRF2TRFH and forming a stable hydrogen bond network with TIN2TBM or ApolloTBM peptides were traced. Our study revealed that TIN2TBM forms a well-defined binding mode with TRF1TRFH as compared to TRF2TRFH, and that the binding pocket of TIN2TBM is deeper for TRF2TRFH protein than ApolloTBM. The MD data provide a basis for the reinterpretation of mutational data obtained in crystallographic work for the TRF proteins. Together, the previously determined X-ray structure and our MD provide a detailed view of the TRF-peptide binding mode and the structure of TRF1/2 binding pockets. Particular TRF-peptide interactions are very specific for the formation of each protein-peptide complex, identifying TRF proteins as potential targets for the design of inhibitors/drugs modulating telomere machinery for anticancer therapy.


Asunto(s)
Enzimas Reparadoras del ADN/química , Simulación de Dinámica Molecular , Proteínas Nucleares/química , Proteínas de Unión a Telómeros/química , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/química , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas , Humanos , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Complejo Shelterina , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
15.
Biotechnol Appl Biochem ; 64(6): 810-826, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27859659

RESUMEN

Reverse transcriptase (RT) inhibitors are currently used to treat human immunodeficiency virus (HIV)-1 infections. In this work, novel triethylamine derivatives were designed and studied by rigid and flexible docking and molecular dynamics (MD) approaches. An apo form of HIV-1 RT was also studied by MD simulation to analyze comparative response of protein in ligand-bound and ligand-unbound forms. Among newly designed HIV-1 RT inhibitors, compound HIV104 was the most potent inhibitor considering different docking results. Molecular docking results were further validated by MD simulations of an HIV-1 RT/HIV104 complex using two independent software (Discovery Studio Client 3.1 and GROMACS) to perform comparative analysis. Results suggest that hydroxyl and carboxyl groups present at -R1 position in compounds favored strong H-bond contacts as well as good interaction energy profile. Our MD results are consistent with the observations that conformational dynamics between the thumb and finger subdomains of HIV-1 RT controls its dynamics on substrate binding and subsequent activity. MD studies of HIV-1 RT/HIV104 provide insight into interrelatedness of residue scale interactions and global conformational change and also hint at the complex nature of allosteric inhibition. Thus, the results obtained from this study facilitate the design of potent HIV-1 RT inhibitors.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , Metilaminas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/metabolismo , Ligandos , Metilaminas/síntesis química , Metilaminas/química , Modelos Moleculares , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Relación Estructura-Actividad
16.
Biochim Biophys Acta ; 1848(10 Pt A): 2065-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26014489

RESUMEN

EmrE protein transports positively charged aromatic drugs (xenobiotics) in exchange for two protons and thus provides bacteria resistance to variety of drugs. In order to understand how this protein may recognize ligands, the monomer and asymmetric apo-form of the EmrE dimer embedded in a heterogeneous phospholipid (POPE+POPG) membrane were studied by molecular dynamics simulations. Dimer is regarded as a functional form of the transporter, but to understand molecular aspects of its mode of action, a monomer was also included in our work. We analyzed hydrogen bonds which include inter- and intra-molecular interactions. Analyzing the long-lasting H-bond interactions, we found that water access to the internal transmembrane segments is regulated by residues with aromatic or basic side chains and fluctuating transmembrane helices. Our finding supports that GLU14 in EmrE apo-form is ready to interact or bind with substrate molecule. The analysis of distance center of masses and water entrance area indicate the feasibility of the dimer to undergo induced fit in order to accommodate a ligand. The results indicate that a binding pattern can be formed in the EmrE in such a way that GLU14 binds to the positively charged fragment of a substrate molecule, and other aromatic residues (i.e., TRP63 and TYR40) located in vicinity may accommodate other non-polar parts of substrate molecule. The results of our simulation also allow us to support experimentally testable hypotheses concerning functional inward-outward conformational changes of the protein.


Asunto(s)
Antiportadores/química , Antiportadores/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Membrana Dobles de Lípidos/química , Modelos Químicos , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica
17.
Langmuir ; 32(14): 3452-61, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27007267

RESUMEN

Membrane-active antibiotics are known to selectively target certain pathogens based on cell membrane properties, such as fluidity, lipid ordering, and phase behavior. These are in turn modulated by the composition of a lipid bilayer and in particular by the presence and type of membrane sterols. Amphotericin B (AmB), the golden standard of antifungal treatment, exhibits higher activity toward ergosterol-rich fungal membranes, which permits its use against systemic mycoses; however, the selectivity for fungal membranes is far from satisfactory leading to severe side effects. Despite decades of research, no consensus has emerged on the origin of AmB specificity for fungal cells and its actual mode of action at the molecular level. Previously, it has been proposed that the specific action of AmB is related to differences in its affinity for membranes of different composition. In this work, we investigate this relationship by employing molecular dynamics simulations to compare the free energy of insertion of AmB into three types of membranes: a pure DMPC bilayer and DMPC bilayers containing 30% of cholesterol or ergosterol. We analyze the orientation of AmB molecules within the bilayer in order to unambiguously establish their membrane binding mode and relate the orientational freedom to the sterol-dependent tightness of lipid packing. Our results strongly indicate that the membrane insertion of AmB proceeds virtually to completion independent of membrane type, and hence the higher toxicity against fungal membranes may rather result from differences in subsequent oligomerization in the membrane and assembly of monomers into functional transmembrane pores. In particular, the latter could be facilitated by sterol-induced ordering of AmB molecules along the membrane normal, revealed by our free energy profiles. Moreover--in contrast to certain claims--we find no stable binding mode corresponding to the horizontal adsorption of AmB on the membrane surface.


Asunto(s)
Anfotericina B/química , Colesterol/química , Ergosterol/química , Membrana Dobles de Lípidos/química , Dimiristoilfosfatidilcolina/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Simulación de Dinámica Molecular , Termodinámica
18.
Drug Discov Today ; 29(8): 104056, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844065

RESUMEN

As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.

19.
Biophys J ; 104(7): 1485-94, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23561525

RESUMEN

Amphotericin B (AmB) is an effective but toxic antifungal drug, known to increase the permeability of the cell membrane, presumably by assembling into transmembrane pores in a sterol-dependent manner. The aggregation of AmB molecules in a phospholipid bilayer is, thus, crucial for the drug's activity. To provide an insight into the molecular nature of this process, here, we report an atomistic molecular dynamics simulation study of AmB head-to-head dimerization in a phospholipid bilayer, a possible early stage of aggregation. To compare the effect of sterols on the thermodynamics of aggregation and the architecture of the resulting AmB-AmB complexes, free energy profiles for the dimerization in ergosterol- or cholesterol-containing and sterol-free membranes are derived from the simulations. These profiles demonstrate that although AmB dimers are formed in all the systems studied, they are significantly less favorable in the bilayer with ergosterol than in the cholesterol-containing or sterol-free ones. We investigate the structural and energetic determinants of this difference and discuss its consequences for the AmB mechanism of action.


Asunto(s)
Anfotericina B/química , Antibacterianos/química , Colesterol/farmacología , Dimerización , Ergosterol/farmacología , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Conformación Molecular , Fosfolípidos/química , Termodinámica
20.
J Cancer Res Clin Oncol ; 149(10): 8131-8141, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37031434

RESUMEN

The mechanisms of antigen processing and presentation play a crucial role in the recognition and targeting of cancer cells by the immune system. Cancer cells can evade the immune system by downregulating or losing the expression of the proteins recognized by the immune cells as antigens, creating an immunosuppressive microenvironment, and altering their ability to process and present antigens. This review focuses on the mechanisms of cancer immune evasion with a specific emphasis on the role of antigen presentation machinery. The study of the immunopeptidome, or peptidomics, has provided insights into the mechanisms of cancer immune evasion and has potential applications in cancer diagnosis and treatment. Additionally, manipulating the epigenetic landscape of cancer cells plays a critical role in suppressing the immune response against cancer. Targeting these mechanisms through the use of HDACis, DNMTis, and combination therapies has the potential to improve the efficacy of cancer immunotherapy. However, further research is needed to fully understand the mechanisms of action and optimal use of these therapies in the clinical setting.


Asunto(s)
Presentación de Antígeno , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA