Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324309

RESUMEN

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Asunto(s)
Autofagia , Evolución Biológica , Pared Celular , Xilema , Pared Celular/metabolismo , Autofagia/fisiología , Xilema/fisiología , Cycadopsida/fisiología , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiología , Helechos/fisiología , Helechos/citología
2.
Planta ; 254(1): 15, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34184131

RESUMEN

MAIN CONCLUSION: Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.


Asunto(s)
Autofagia , Raíces de Plantas , Desarrollo de la Planta , Plantas
3.
New Phytol ; 232(3): 1123-1158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33159479

RESUMEN

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Asunto(s)
Ecosistema , Plantas , Atmósfera , Ecología , Fenotipo
4.
New Phytol ; 232(3): 973-1122, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608637

RESUMEN

In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.


Asunto(s)
Ecosistema , Plantas , Bases de Datos Factuales , Ecología , Fenotipo
5.
Glob Chang Biol ; 27(16): 3859-3869, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33934467

RESUMEN

Harsh environmental conditions affect both leaf structure and root traits. However, shoot growth in high-latitude systems is predominately under photoperiod control while root growth may occur for as long as thermal conditions are favorable. The different sensitivities of these organs may alter functional relationships above- and belowground along environmental gradients. We examined the relationship between absorptive root and foliar traits of Scots pine trees growing in situ along a temperate-boreal transect and in trees grown in a long-term common garden at a temperate latitude. We related changes in foliar nitrogen, phosphorus, specific leaf area, needle mass and 13 C signatures to geographic trends in absorptive root biomass to better understand patterns of altered tree nutrition and water balance. Increased allocation to absorptive fine roots was associated with greater uptake of soil nutrients and subsequently higher needle nutrient contents in the northern provenances compared with more southern provenances when grown together in a common garden setting. In contrast, the leaf δ13 C in northern and southern provenances were similar within the common garden suggesting that higher absorptive root biomass fractions could not adequately increase water supply in warmer climates. These results highlight the importance of allocation within the fine-root system and its impacts on needle nutrition while also suggesting increasing stomatal limitation of photosynthesis in the context of anticipated climatic changes.


Asunto(s)
Pinus sylvestris , Pinus , Biomasa , Clima , Hojas de la Planta , Raíces de Plantas , Árboles
6.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401671

RESUMEN

Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.


Asunto(s)
Cotiledón/metabolismo , Fagus/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Supervivencia Celular/fisiología , Biología Computacional , Cotiledón/citología , Fagus/citología , Fagus/embriología , Fagus/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Unión Proteica , Semillas/citología , Semillas/enzimología
7.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192046

RESUMEN

Plant senescence is a highly regulated process that allows nutrients to be mobilized from dying tissues to other organs. Despite that senescence has been extensively studied in leaves, the senescence of ephemeral organs located underground is still poorly understood, especially in the context of phytohormone engagement. The present study focused on filling this knowledge gap by examining the roles of abscisic acid (ABA) and jasmonate in the regulation of senescence of fine, absorptive roots and leaves of Populus trichocarpa. Immunohistochemical (IHC), chromatographic, and molecular methods were utilized to achieve this objective. A transcriptomic analysis identified significant changes in gene expression that were associated with the metabolism and signal transduction of phytohormones, especially ABA and jasmonate. The increased level of these phytohormones during senescence was detected in both organs and was confirmed by IHC. Based on the obtained data, we suggest that phytohormonal regulation of senescence in roots and leaves is organ-specific. We have shown that the regulation of ABA and JA metabolism is tightly regulated during senescence processes in both leaves and roots. The results were discussed with respect to the role of ABA in cold tolerance and the role of JA in resistance to pathogens.


Asunto(s)
Ácido Abscísico/metabolismo , Envejecimiento/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Envejecimiento/genética , Biología Computacional/métodos , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Anotación de Secuencia Molecular , Fenotipo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Raíces de Plantas/genética , Populus/genética
8.
Planta ; 250(6): 1789-1801, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31451904

RESUMEN

MAIN CONCLUSION: Autophagy is involved in developmentally programmed cell death and is identified during the early development of phloem, as well as xylem with a dual role, as both an inducer and executioner of cell death. The regulation of primary and secondary development of roots and stems is important for the establishment of root systems and for the overall survival of trees. The molecular and cellular basis of the autophagic processes, which are used at distinct moments during the growth of both organs, is crucial to understand the regulation of their development. To address this, we use Populus trichocarpa seedlings grown in a rhizotron system to examine the autophagy processes involved in root and stem development. To monitor the visual aspects of autophagy, transmission electron microscopy (TEM) and immunolocalization of AuTophaGy-related protein (ATG8) enabled observations of the phenomenon at a structural level. To gain further insight into the autophagy process at the protein and molecular level, we evaluated the expression of ATG gene transcripts and ATG protein levels. Alternations in the expression level of specific ATG genes and localization of ATG8 proteins were observed during the course of root or stem primary and secondary development. Specifically, ATG8 was present in the cells exhibiting autophagy, during the differentiation and early development of xylem and phloem tissues, including both xylary and extraxylary fibers. Ultrastructural observations revealed tonoplast invagination with the formation of autophagic-like bodies. Additionally, the accumulation of autophagosomes was identifiable during the differentiation of xylem in both organs, long before the commencement of cell death. Taken together, these results provide evidence in support of the dual role of autophagy in developmental PCD. A specific role of the controller of cell death, which is a committed step with the release of hydrolytic enzymes from the vacuole and final digestion of protoplast, from which there is no return once initiated, is only attributed to mega-autophagy.


Asunto(s)
Autofagia/fisiología , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Electroforesis en Gel Bidimensional , Técnica del Anticuerpo Fluorescente , Expresión Génica , Microscopía Electrónica de Transmisión , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Populus/metabolismo , Populus/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/crecimiento & desarrollo
9.
Plant Physiol ; 178(2): 654-671, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30126868

RESUMEN

Barley crop model was analyzed for early and late events during the dark-induced leaf senescence (DILS) as well as for deciphering critical time limit for reversal of the senescence process. Chlorophyll fluorescence vitality index Rfd was determined as the earliest parameter that correlated well with the cessation of photosynthesis prior to microautophagy symptoms, initiation of DNA degradation, and severalfold increase in the endonuclease BNUC1. DILS was found characterized by up-regulation of processes that enable recycling of degraded macromolecules and metabolites, including increased NH4 + remobilization, gluconeogenesis, glycolysis, and partial up-regulation of glyoxylate and tricarboxylate acid cycles. The most evident differences in gene medleys between DILS and developmental senescence included hormone-activated signaling pathways, lipid catabolic processes, carbohydrate metabolic processes, low-affinity ammonia remobilization, and RNA methylation. The mega-autophagy symptoms were apparent much later, specifically on day 10 of DILS, when disruption of organelles-nucleus and mitochondria -became evident. Also, during this latter-stage programmed cell death processes, namely, shrinking of the protoplast, tonoplast interruption, and vacuole breakdown, chromatin condensation, more DNA fragmentation, and disintegration of the cell membrane were prominent. Reversal of DILS by re-exposure of the plants from dark to light was possible until but not later than day 7 of dark exposure and was accompanied by regained photosynthesis, increase in chlorophyll, and reversal of Rfd, despite activation of macro-autophagy-related genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/fisiología , Modelos Biológicos , Hojas de la Planta/fisiología , Apoptosis , Autofagia , Metabolismo de los Hidratos de Carbono , Núcleo Celular/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Hordeum/genética , Hordeum/efectos de la radiación , Hordeum/ultraestructura , Luz , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Protoplastos , Factores de Tiempo , Regulación hacia Arriba , Vacuolas/metabolismo
10.
BMC Plant Biol ; 18(1): 260, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373512

RESUMEN

BACKGROUND: Senescence, despite its destructive character, is a process that is precisely-regulated. The control of senescence is required to achieve remobilization of resources, a principle aspect of senescence. Remobilization allows plants to recapture valuable resources that would otherwise be lost to the environment with the senescing organ. Autophagy is one of the critical processes that is switched on during senescence. This evolutionarily conserved process plays dual, antagonistic roles. On the one hand, it counteracts instantaneous cell death and allows the process of remobilization to be set in motion, while on the other hand, it participates in the degradation of cellular components. Autophagy has been demonstrated to occur in many plant species during the senescence of leaves and flower petals. Little is known, however, about the senescence process in other ephemeral organs, such as fine roots, whose lifespan is also relatively short. We hypothesized that, like the case of seasonal leaf senescence, autophagy also plays a role in the senescence of fine roots, and that both processes are synchronized in their timing. RESULTS: We evaluated which morphological and cytological symptoms are universal or unique in the senescence of fine roots and leaves. The results of our study confirmed that autophagy plays a key role in the senescence of fine roots, and is associated also with the process of cellular components degradation. In both organs, structures related to autophagy were observed, such as autophagic bodies and autophagosomes. The role of autophagy in the senescence of these plant organs was further confirmed by an analysis of ATG gene expression and protein detection. CONCLUSIONS: The present study is the first one to examine molecular mechanisms associated with the senescence of fine roots, and provide evidence that can be used to determine whether senescence of fine roots can be treated as another example of developmentally programmed cell death (dPCD). Our results indicate that there is a strong similarity between the senescence of fine roots and other ephemeral organs, suggesting that this process occurs by the same autophagy-related mechanisms in all plant ephemeral organs.


Asunto(s)
Autofagia/fisiología , Hojas de la Planta/citología , Raíces de Plantas/citología , Populus/citología , Populus/fisiología , Supervivencia Celular , Regulación de la Expresión Génica de las Plantas , Células Vegetales/fisiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Estaciones del Año
11.
Ann Bot ; 113(7): 1235-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24812251

RESUMEN

BACKGROUND AND AIMS: Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings. METHODS: Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ. KEY RESULTS: The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole. CONCLUSIONS: The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Populus/fisiología , Transducción de Señal , Xilema/fisiología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Transporte Biológico , Expresión Génica , Peróxido de Hidrógeno/metabolismo , Hibridación Fluorescente in Situ , Etiquetado Corte-Fin in Situ , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Óxido Nítrico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/ultraestructura , Populus/citología , Populus/genética , Populus/crecimiento & desarrollo , Xilema/citología , Xilema/genética , Xilema/crecimiento & desarrollo
12.
Planta ; 237(6): 1453-64, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23430352

RESUMEN

Laminae of Adiantum raddianum Presl., a fern belonging to the family Pteridaceae, are characterised by the presence of epidermal fibre-like cells under the vascular bundles. These cells were thought to contain silica bodies, but their thickened walls leave no space for intracellular silica suggesting it may actually be deposited within their walls. Using advanced electron microscopy in conjunction with energy dispersive X-ray microanalysis we showed the presence of silica in the cell walls of the fibre-like idioblasts. However, it was specifically localised to the outer layers of the periclinal wall facing the leaf surface, with the thick secondary wall being devoid of silica. Immunocytochemical experiments were performed to ascertain the respective localisation of silica deposition and glycan polymers. Epitopes characteristic for pectic homogalacturonan and the hemicelluloses xyloglucan and mannan were detected in most epidermal walls, including the silica-rich cell wall layers. The monoclonal antibody, LM6, raised against pectic arabinan, labelled the silica-rich primary wall of the epidermal fibre-like cells and the guard cell walls, which were also shown to contain silica. We hypothesise that the silicified outer wall layers of the epidermal fibre-like cells support the lamina during cell expansion prior to secondary wall formation. This implies that silicification does not impede cell elongation. Although our results suggest that pectic arabinan may be implicated in silica deposition, further detailed analyses are needed to confirm this. The combinatorial approach presented here, which allows correlative screening and in situ localisation of silicon and cell wall polysaccharide distribution, shows great potential for future studies.


Asunto(s)
Adiantum/citología , Pared Celular/metabolismo , Epítopos/inmunología , Epidermis de la Planta/citología , Hojas de la Planta/citología , Polisacáridos/inmunología , Dióxido de Silicio/inmunología , Adiantum/metabolismo , Adiantum/ultraestructura , Anticuerpos Monoclonales/metabolismo , Pared Celular/ultraestructura , Epidermis de la Planta/metabolismo , Epidermis de la Planta/ultraestructura , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Silicio/metabolismo , Tomografía Computarizada por Rayos X
13.
Plant Methods ; 19(1): 129, 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37981669

RESUMEN

The evolution of plants to efficiently transport water and assimilates over long distances is a major evolutionary success that facilitated their growth and colonization of land. Vascular tissues, namely xylem and phloem, are characterized by high specialization, cell heterogeneity, and diverse cell components. During differentiation and maturation, these tissues undergo an irreversible sequence of events, leading to complete protoplast degradation in xylem or partial degradation in phloem, enabling their undisturbed conductive function. Due to the unique nature of vascular tissue, and the poorly understood processes involved in xylem and phloem development, studying the molecular basis of tissue differentiation is challenging. In this review, we focus on methods crucial for gene expression research in conductive tissues, emphasizing the importance of initial anatomical analysis and appropriate material selection. We trace the expansion of molecular techniques in vascular gene expression studies and discuss the application of single-cell RNA sequencing, a high-throughput technique that has revolutionized transcriptomic analysis. We explore how single-cell RNA sequencing will enhance our knowledge of gene expression in conductive tissues.

14.
Am J Bot ; 99(9): 1417-26, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22917946

RESUMEN

PREMISE OF THE STUDY: Root systems develop to effectively absorb water and nutrients and to rapidly transport these materials to the transpiring shoot. In woody plants, roots can be born with different functions: fibrous roots are primarily used for water and nutrient absorption, whereas pioneer roots have a greater role in transport. Because pioneer roots extend rapidly in the soil and typically quickly produce fibrous roots, they need to develop transport capacity rapidly so as to avoid becoming a bottleneck to the absorbed water of the developing fibrous roots and, as we hypothesized, immediately activate a specific type of autophagy at a precise time of their development. METHODS: Using microscopy techniques, we monitored xylem development in Populus trichocarpa roots in the first 7 d after emergence under field conditions. KEY RESULTS: Newly formed pioneer roots contained more primary xylem poles and had larger diameter tracheary elements than fibrous roots. While xylogenesis started later in pioneer roots than in fibrous, it was completed at the same time, resulting in functional vessels on the third to fourth day following root emergence. Programmed cell death was responsible for creating the water conducting capacity of xylem. Although the early xylogenesis processes were similar in fibrous and pioneer roots, secondary vascular development proceeded much more rapidly in pioneer roots. CONCLUSIONS: Compared to fibrous roots, rapid development of transport capacity in pioneer roots is not primarily caused by accelerated xylogenesis but by larger and more numerous tracheary elements and by rapid initiation of secondary growth.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Populus/metabolismo , Xilema/crecimiento & desarrollo , Apoptosis , Transporte Biológico , Microscopía Fluorescente , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Populus/citología , Populus/ultraestructura , Xilema/citología , Xilema/ultraestructura
15.
J Vis Exp ; (186)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35993752

RESUMEN

Infection of Brassica crops by the soilborne protist Plasmodiophora brassicae leads to gall formation on the underground organs. The formation of galls requires cellular reprogramming and changes in the metabolism of the infected plant. This is necessary to establish a pathogen-oriented physiological sink toward which the host nutrients are redirected. For a complete understanding of this particular plant-pathogen interaction and the mechanisms by which host growth and development are subverted and repatterned, it is essential to track and observe the internal changes accompanying gall formation with cellular resolution. Methods combining fluorescent stains and fluorescent proteins are often employed to study anatomical and physiological responses in plants. Unfortunately, the large size of galls and their low transparency act as major hurdles in performing whole-mount observations under the microscope. Moreover, low transparency limits the employment of fluorescence microscopy to study clubroot disease progression and gall formation. This article presents an optimized method for fixing and clearing galls to facilitate epifluorescence and confocal microscopy for inspecting P. brassicae-infected galls. A tissue-clearing protocol for rapid optical clearing was used followed by vibratome sectioning to detect anatomical changes and localize gene expression with promoter fusions and reporter lines tagged with fluorescent proteins. This method will prove useful for studying cellular and physiological responses in other pathogen-triggered structures in plants, such as nematode-induced syncytia and root knots, as well as leaf galls and deformations caused by insects.


Asunto(s)
Arabidopsis , Plasmodiophorida , Arabidopsis/metabolismo , Expresión Génica , Microscopía Fluorescente , Enfermedades de las Plantas/genética , Plasmodiophorida/genética
16.
BMC Plant Biol ; 10: 100, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20509918

RESUMEN

BACKGROUND: Cinnamyl Alcohol Dehydrogenase (CAD) proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.). Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks) was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. RESULTS: CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. CONCLUSIONS: Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/genética , Populus/genética , Animales , ADN de Plantas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Mariposas Nocturnas , Familia de Multigenes , Hojas de la Planta/metabolismo , Populus/enzimología , Alineación de Secuencia , Análisis de Secuencia de ADN , Estrés Fisiológico , Xilema/metabolismo
17.
Antioxidants (Basel) ; 9(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316974

RESUMEN

Two related tree species, Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. We compared the seeds of these two species to characterize the developmentally driven changes in the levels of peptide-bound methionine sulfoxide (MetO) and the abundance of methionine sulfoxide reductases (Msrs) B1 and B2, with respect to the cellular redox environment. Protein oxidation at the Met level was dynamic only in Norway maple seeds, and the reduced MsrB2 form was detected only in this species. Cell redox status, characterized by the levels of reduced and oxidized ascorbate, glutathione, and nicotinamide adenine dinucleotide (NAD)/phosphate (NADP), was clearly more reduced in the Norway maple seeds than in the sycamore seeds. Clear correlations between MetO levels, changes in water content and redox status were reported in orthodox Acer seeds. The abundance of Msrs was correlated in both species with redox determinants, mainly ascorbate and glutathione. Our data suggest that MsrB2 is associated with the acquisition of desiccation tolerance and that ascorbate might be involved in the redox pathway enabling the regeneration of Msr via intermediates that are not known yet.

18.
Tree Physiol ; 40(8): 987-1000, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32091108

RESUMEN

The remobilization and resorption of plant nutrients is considered as a crucial aspect of the seasonal senescence of plant organs. In leaves, the mechanisms responsible for the relocation of valuable compounds are well understood while the related processes in roots are still being debated. Some research indicates that remobilization in roots occurs, while other studies have not found evidence of this process. Considering that the total biomass of fine roots is equal to or greater than that of leaves, clarifying the conflicting reports and ambiguities may provide critical information on the circulation of chemical elements in forest ecosystems. This study provides new information concerning the basis for remobilization processes in roots by combining physiological data with gene expression and protein levels. We suggest that, as in leaves, molecular mechanisms involved in nitrogen (N) resorption are also activated in senescent roots. An analysis of N concentration indicated that N levels decreased during the senescence of both organs. The decrease was associated with an increase in the expression of a glutamine synthetase (GS) gene and a concomitant elevation in the amount of GS-one of the most important enzymes in N metabolism. In addition, significant accumulation of carbohydrates was observed in fine roots, which may represent an adaptation to unfavorable weather conditions that would allow remobilization to occur rather than a rapid death in response to ground frost or cold. Our results provide new insights into the senescence of plant organs and clarify contentious topics related to the remobilization process in fine roots.


Asunto(s)
Populus/genética , Ecosistema , Nitrógeno , Hojas de la Planta , Raíces de Plantas , Estaciones del Año
19.
Antioxidants (Basel) ; 9(3)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120843

RESUMEN

In contrast to aboveground organs (stems and leaves), developmental events and their regulation in underground organs, such as pioneer and fine roots, are quite poorly understood. The objective of the current study was to achieve a better understanding of the physiological and molecular role of reactive oxygen species (ROS) and ROS-related enzymes in the process of stem and pioneer root development in black cottonwood (Populus trichocarpa), as well as in the senescence of leaves and fine roots. Results of a transcriptomic analysis revealed that primary/secondary growth and senescence are accompanied by substantial changes in the expression of genes related to oxidative stress metabolism. We observed that some mechanisms common for above- and under-ground organs, e.g., the expression of superoxide dismutase (SOD) genes and SOD activity, declined during stems' and pioneer roots' development. Moreover, the localization of hydrogen peroxide (H2O2) and superoxide (O2•-) in the primary and secondary xylem of stems and pioneer roots confirms their involvement in xylem cell wall lignification and the induction of programmed cell death (PCD). H2O2 and O2•- in senescing fine roots were present in the same locations as demonstrated previously for ATG8 (AuTophaGy-related) proteins, implying their participation in cell degradation during senescence, while O2•- in older leaves was also localized similarly to ATG8 in chloroplasts, suggesting their role in chlorophagy. ROS and ROS-related enzymes play an integral role in the lignification of xylem cell walls in Populus trichocarpa, as well as the induction of PCD during xylogenesis and senescence.

20.
BMC Plant Biol ; 9: 26, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19267902

RESUMEN

BACKGROUND: Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. RESULTS: The phylogenetic analyses showed that CAD genes fall into three main classes (clades), one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10) belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. CONCLUSION: The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication event that happened in the ancestor of Salicaceae. Phylogenetic analyses associated with expression profiling and results from previous studies suggest that CAD genes involved in wood development belong to Class I and Class II. The other CAD genes from Class II and Class III may function in plant tissues under biotic stresses. The conservation of most duplicated CAD genes, the differential distribution of motifs in their promoter regions, and the divergence of their expression profiles in various tissues of Populus plants indicate that genes in the CAD family have evolved tissue-specialized expression profiles and may have divergent functions.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Familia de Multigenes , Filogenia , Populus/enzimología , ADN de Plantas/genética , Evolución Molecular , Exones , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Intrones , Lignina/metabolismo , Populus/genética , Regiones Promotoras Genéticas , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA