Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Alzheimers Dement ; 10(2): 187-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23867794

RESUMEN

BACKGROUND: Early-life lead (Pb) exposure induces overexpression of the amyloid beta precursor protein and its amyloid beta product in older rats and primates. We exposed rodents to Pb during different life span periods and examined cognitive function in old age and its impact on biomarkers associated with Alzheimer's disease (AD). METHODS: Morris, Y, and the elevated plus mazes were used. Western blot, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay were used to study the levels of AD biomarkers. RESULTS: Cognitive impairment was observed in mice exposed as infants but not as adults. Overexpression of AD-related genes (amyloid beta precursor protein and ß-site amyloid precursor protein cleaving enzyme 1) and their products, as well as their transcriptional regulator-specificity protein 1 (Sp1)-occurred only in older mice with developmental exposure to Pb. CONCLUSIONS: A window of vulnerability to Pb neurotoxicity exists in the developing brain that can influence AD pathogenesis and cognitive decline in old age.


Asunto(s)
Envejecimiento , Trastornos del Conocimiento/inducido químicamente , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Plomo/toxicidad , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Péptidos Catiónicos Antimicrobianos/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Fragmentos de Péptidos/metabolismo , ARN Mensajero/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37681792

RESUMEN

The public health emergency caused by the COVID-19 pandemic stimulated stakeholders from diverse disciplines and institutions to establish new collaborations to produce informed public health responses to the disease. Wastewater-based epidemiology for COVID-19 grew quickly during the pandemic and required the rapid implementation of such collaborations. The objective of this article is to describe the challenges and results of new relationships developed in Detroit, MI, USA among a medical school and an engineering college at an academic institution (Wayne State University), the local health department (Detroit Health Department), and an environmental services company (LimnoTech) to utilize markers of the COVID-19 virus, SARS-CoV-2, in wastewater for the goal of managing COVID-19 outbreaks. Our collaborative team resolved questions related to sewershed selection, communication of results, and public health responses and addressed technical challenges that included ground-truthing the sewer maps, overcoming supply chain issues, improving the speed and sensitivity of measurements, and training new personnel to deal with a new disease under pandemic conditions. Recognition of our complementary roles and clear communication among the partners enabled city-wide wastewater data to inform public health responses within a few months of the availability of funding in 2020, and to make improvements in sensitivity and understanding to be made as the pandemic progressed and evolved. As a result, the outbreaks of COVID-19 in Detroit in fall and winter 2021-2022 (corresponding to Delta and Omicron variant outbreaks) were tracked in 20 sewersheds. Data comparing community- and hospital-associated sewersheds indicate a one- to two-week advance warning in the community of subsequent peaks in viral markers in hospital sewersheds. The new institutional relationships impelled by the pandemic provide a good basis for continuing collaborations to utilize wastewater-based human and pathogen data for improving the public health in the future.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Salud Pública , Sector Privado , Aguas Residuales , Pandemias , SARS-CoV-2 , COVID-19/epidemiología
3.
Sci Total Environ ; 889: 164180, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201848

RESUMEN

Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aguas Residuales , COVID-19/diagnóstico , Bioensayo , Brotes de Enfermedades
4.
Chem Sci ; 14(44): 12747-12766, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020385

RESUMEN

The innate immune response is vital for the success of prophylactic vaccines and immunotherapies. Control of signaling in innate immune pathways can improve prophylactic vaccines by inhibiting unfavorable systemic inflammation and immunotherapies by enhancing immune stimulation. In this work, we developed a machine learning-enabled active learning pipeline to guide in vitro experimental screening and discovery of small molecule immunomodulators that improve immune responses by altering the signaling activity of innate immune responses stimulated by traditional pattern recognition receptor agonists. Molecules were tested by in vitro high throughput screening (HTS) where we measured modulation of the nuclear factor κ-light-chain-enhancer of activated B-cells (NF-κB) and the interferon regulatory factors (IRF) pathways. These data were used to train data-driven predictive models linking molecular structure to modulation of the NF-κB and IRF responses using deep representational learning, Gaussian process regression, and Bayesian optimization. By interleaving successive rounds of model training and in vitro HTS, we performed an active learning-guided traversal of a 139 998 molecule library. After sampling only ∼2% of the library, we discovered viable molecules with unprecedented immunomodulatory capacity, including those capable of suppressing NF-κB activity by up to 15-fold, elevating NF-κB activity by up to 5-fold, and elevating IRF activity by up to 6-fold. We extracted chemical design rules identifying particular chemical fragments as principal drivers of specific immunomodulation behaviors. We validated the immunomodulatory effect of a subset of our top candidates by measuring cytokine release profiles. Of these, one molecule induced a 3-fold enhancement in IFN-ß production when delivered with a cyclic di-nucleotide stimulator of interferon genes (STING) agonist. In sum, our machine learning-enabled screening approach presents an efficient immunomodulator discovery pipeline that has furnished a library of novel small molecules with a strong capacity to enhance or suppress innate immune signaling pathways to shape and improve prophylactic vaccination and immunotherapies.

5.
ACS Cent Sci ; 9(3): 427-439, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36968540

RESUMEN

Stimulation of the innate immune system is crucial in both effective vaccinations and immunotherapies. This is often achieved through adjuvants, molecules that usually activate pattern recognition receptors (PRRs) and stimulate two innate immune signaling pathways: the nuclear factor kappa-light-chain-enhancer of activated B-cells pathway (NF-κB) and the interferon regulatory factors pathway (IRF). Here, we demonstrate the ability to alter and improve adjuvant activity via the addition of small molecule "immunomodulators". By modulating signaling activity instead of receptor binding, these molecules allow the customization of select innate responses. We demonstrate both inhibition and enhancement of the products of the NF-κB and IRF pathways by several orders of magnitude. Some modulators apply generally across many receptors, while others focus specifically on individual receptors. Modulators boost correlates of a protective immune responses in a commercial flu vaccine model and reduced correlates of reactogenicity in a typhoid vaccine model. These modulators have a range of applications: from adjuvanticity in prophylactics to enhancement of immunotherapy.

6.
Sci Total Environ ; 847: 157547, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35872187

RESUMEN

Wastewater based epidemiology (WBE) has emerged as a strategy to identify, locate, and manage outbreaks of COVID-19, and thereby possibly prevent surges in cases, which overwhelm local to global health care networks. The WBE process is based on assaying municipal wastewater for molecular markers of the SARS-CoV-2 virus. Standard processes for purifying viral RNA from municipal wastewater are often time-consuming and require the handling of large quantities of wastewater, negatively affecting throughput, timely reporting, and safety. We demonstrate here an automated, faster system to purify viral RNA from smaller volumes of wastewater but with increased sensitivity for detection of SARS-CoV-2 markers. We document the effectiveness of this new approach by way of comparison to the PEG/NaCl/Qiagen method prescribed by the State of Michigan for SARS-CoV-2 wastewater monitoring and show its application to several Detroit sewersheds. Specifically, compared to the PEG/NaCl/Qiagen method, viral RNA purification using the PerkinElmer Chemagic™ 360 lowered handling time, decreased the amount of wastewater required by ten-fold, increased the amount of RNA isolated per µl of final elution product by approximately five-fold, and effectively removed ddPCR inhibitors from most sewershed samples. For detection of markers on the borderline of viral detectability, we found that use of the Chemagic™ 360 enabled the measurement of viral markers in a significant number of samples for which the result with the PEG/NaCl/Qiagen method was below the level of detectability. The improvement in detectability of the viral markers might be particularly important for early warning to public health authorities at the beginning of an outbreak. Applied to sewersheds in Detroit, the technique enabled more sensitive detection of SARS-CoV-2 markers with good correlation between wastewater signals and COVID-19 cases in the sewersheds. We also discuss advantages and disadvantages of several automated RNA purification systems, made by Promega, PerkinElmer, and ThermoFisher.


Asunto(s)
COVID-19 , SARS-CoV-2 , Biomarcadores , Prueba de COVID-19 , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral , SARS-CoV-2/genética , Cloruro de Sodio , Aguas Residuales/análisis
7.
Neurotoxicology ; 44: 114-20, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24954411

RESUMEN

The sporadic nature in over 90% of Alzheimer's disease (AD) cases, the differential susceptibility and course of illness, and latent onset of the disease suggest involvement of an environmental component in the etiology of late onset AD (LOAD). Recent reports from our lab have demonstrated that molecular alterations favor abundant tau phosphorylation and immunoreactivity in the frontal cortex of aged primates with infantile lead (Pb) exposure (Bihaqi and Zawia, 2013). Here we report that developmental Pb exposure results in elevation of protein and mRNA levels of tau in aged mice. Western blot analysis revealed aberrant site-specific tau hyperphosphorylation accompanied by elevated cyclin dependent kinase 5 (CDK5) levels in aged mice with prior Pb exposure. Mice with developmental Pb exposure also displayed altered protein ratio of p35/p25 with more Serine/Threonine phosphatase activity at old age. These changes favored increase in tau phosphorylation, thus providing evidence that neurodegenerative diseases may be in part due to environmental influences that occur during development.


Asunto(s)
Enfermedad de Alzheimer/etiología , Corteza Cerebral/metabolismo , Plomo/toxicidad , Proteínas tau/metabolismo , Factores de Edad , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Plomo/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Fosfotransferasas/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA