Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Oral Health ; 24(1): 1218, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402484

RESUMEN

In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min. The NaF-loaded n-HA substrates were then examined for their structural and physical properties, chemical bonds, loading and release profile, pH changes, cytotoxicity, and osteogenic effect on dental pulp stem cells (DPSCs) at the level of RNA and protein expression. The results showed that the n-HA substrates were porous (> 40% porosity) and had rough surfaces. The NaF could be successfully loaded on the substrates, which was 6.43, 4.50, and 1.47 mg, respectively for n-HA substrates with immersion times of 10, 7.5, and 5 min in the NaF suspensions. It was observed that the NaF release rate was rather fast during the first 24 h in all groups (39.06%, 36.43%, and 39.57% for 10, 7.5, and 5 min, respectively), and decreased dramatically after that, indicating a slow detachment of NaF. Furthermore, the pH of the medium related to all materials was changed during the first 4 days of immersion (from 7.38 to pH of about 7.85, 7.84, 7.63, and 7.66 for C0, C5, C7.5, and C10, respectively). The pH of media associated with the C7.5, and C10 increased up to 4 days and remained relatively constant until day 14 (pH = 7.6). The results of the cytotoxicity assay rejected any toxicity of the fabricated NaF-loaded n-HA substrates on DPSCs, and the cells could adhere to their surfaces with enlarged morphology. The results showed no effect on the osteogenic differentiation at the protein level. Nevertheless, this effect was observed at the gene level.


Asunto(s)
Diferenciación Celular , Pulpa Dental , Durapatita , Osteogénesis , Fluoruro de Sodio , Células Madre , Fluoruro de Sodio/farmacología , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Osteogénesis/efectos de los fármacos , Células Madre/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Porosidad , Concentración de Iones de Hidrógeno , Animales , Humanos , Propiedades de Superficie , Células Cultivadas , Supervivencia Celular/efectos de los fármacos
2.
Cell Tissue Bank ; 24(2): 389-400, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36190669

RESUMEN

In this study, hydroxyapatite (HA) scaffolds were synthesized and characterized, following the osteogenic and angiogenic effects of HA scaffolds with or without endometrial mesenchymal stem stromal cells (hEnSCs) derived Exosomes were investigated in rat animal model with calvaria defect. The X-ray diffraction (XRD) analysis of HA powder formation was confirmed with Joint Corporation of Powder Diffraction Standards (JCPDS) files numbers of 34-0010 and 24-0033A and Ball mill, and sintering manufactured Nano-size particles. Obtained results containing FE-SEM images presented that the surface of scaffolds has a rough and porous structure, which makes them ideal and appropriate for tissue engineering. Additionally, the XRD showed that these scaffolds exhibited a crystallized structure without undergoing phase transformation; meanwhile, manufactured scaffolds consistently release exosomes; moreover, in vivo findings containing hematoxylin-eosin staining, immunohistochemistry, Masson's trichrome staining, and histomorphometric analysis confirmed that our implant has an osteogenic and angiogenic characteristic. So prepared scaffolds containing exosomes can be proposed as a promising substitute in tissue engineering.


Asunto(s)
Durapatita , Exosomas , Ratas , Animales , Durapatita/química , Durapatita/farmacología , Andamios del Tejido/química , Células Cultivadas , Regeneración Ósea
3.
Biomed Eng Online ; 21(1): 86, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503442

RESUMEN

BACKGROUND: Three-dimensional (3D) printing is a capable approach for the fabrication of bone tissue scaffolds. Nevertheless, a purely made scaffold such as polylactic acid (PLA) may suffer from shortcomings and be restricted due to its biological behavior. Gelatin, hydroxyapatite and platelet-rich plasma (PRP) have been revealed to be of potential to enhance the osteogenic effect. In this study, it was tried to improve the properties of 3D-printed PLA scaffolds by infilling them with gelatin-nano-hydroxyapatite (PLA/G-nHA) and subsequent coating with PRP. For comparison, bare PLA and PLA/G-nHA scaffolds were also fabricated. The printing accuracy, the scaffold structural characterizations, mechanical properties, degradability behavior, cell adhesion, mineralization, systemic effect of the scaffolds on the liver enzymes, osteocalcin level in blood serum and in vivo bone regeneration capability in rat critical-sized calvaria defect were evaluated. RESULTS: High printing accuracy (printing error of < 11%) was obtained for all measured parameters including strut thickness, pore width, scaffold density and porosity%. The highest mean ultimate compression strength (UCS) was associated with PLA/G-nHA/PRP scaffolds, which was 10.95 MPa. A slow degradation rate was observed for all scaffolds. The PLA/G-nHA/PRP had slightly higher degradation rate, possibly due to PRP release, with burst release occurred at week 4. The MTT results showed that PLA/G-nHA/PRP provided the highest cell proliferation at all time points, and the serum biochemistry (ALT and AST level) results indicated no abnormal/toxic influence caused by scaffold biomaterials. Superior cell adhesion and mineralization were obtained for PLA/G-nHA/PRP. Furthermore, all the developed scaffolds showed bone repair capability. The PLA/G-nHA/PRP scaffolds could better support bone regeneration than bare PLA and PLA/G-nHA scaffolds. CONCLUSION: The PLA/G-nHA/PRP scaffolds can be considered as potential for hard tissue repair.


Asunto(s)
Durapatita , Plasma Rico en Plaquetas , Ratas , Animales , Durapatita/química , Gelatina/metabolismo , Gelatina/farmacología , Andamios del Tejido/química , Osteogénesis , Plasma Rico en Plaquetas/metabolismo , Impresión Tridimensional , Cráneo , Ingeniería de Tejidos/métodos
4.
Lasers Med Sci ; 37(7): 2855-2863, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35394552

RESUMEN

Photobiomodulation (PBM) therapy utilizes low-power lasers to modulate the viability of living human cells and leads to changes in proliferation, differentiation, adhesion and gene expression, even though the rearrangement of cytoskeleton was not previously studied. The present study aims to evaluate the photobiological effects on the elastic behavior of human osteosarcoma cells (MG-63) and their morphological changes. Fluorescence staining, confocal imaging and atomic force microscopy (AFM) topography were performed to study the effects of PBM therapy with the exposure of 532 nm-25mW, 650 nm-3mW, 650 nm-150mW and 780 nm-70mW beams following the 5-min continuous irradiation. The area of each beam was 3.14cm2 with a source-surface distance of 20 cm. Besides the cell proliferation assessment, the migratory potential of MG-63 was determined with the wound healing technique. The results indicated an increase in stiffness and shape index of radiation-induced cells 24 h after exposure along with the obvious F-actins changes. But, cell stiffening was not observed 72 h after 532 nm laser irradiation. Also, a decrease in the migration rate was seen in all of the groups after 72 h of irradiation except cells treated with 532 nm wavelength. However, 532 nm laser beams increase the migratory potential 24 h after exposure. Within 72 h after irradiation, the cell proliferation was only affected by applying 532 nm and 650 nm-150mW laser beams. It was concluded that applying photobiomodulation with wavelengths of 650 nm (at both utilized powers) and 780 nm alters the migration capability and provides a quantitative description of cytoskeletal changes. Moreover, membrane stiffening can be considered as the biological marker of PBM treatments.


Asunto(s)
Terapia por Luz de Baja Intensidad , Osteosarcoma , Proliferación Celular/efectos de la radiación , Citoesqueleto , Módulo de Elasticidad , Humanos , Terapia por Luz de Baja Intensidad/métodos , Osteosarcoma/radioterapia
5.
Phytother Res ; 35(11): 6452-6461, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34606108

RESUMEN

Recent studies suggest that Spirulina may have great therapeutic benefits due to its antioxidant and anti-inflammatory properties. The primary objective of this study was to evaluate the chemopreventive properties of the Spirulina microalgae (Spi) on the regression and survival of tumor, histopathological features of glioblastoma, and detection of the molecular mechanism of Spi. Tumor viability versus Spi was determined using the MTT assay. In vivo antitumor activity of Spi was studied using the glioblastoma model. After tumor induction, the animals were euthanized, and their brains were removed. Histological evaluation was performed for tumor size and manifestation. The mechanisms of the anticancer effects of Spi were investigated by evaluating the microRNAs and their targets. The results demonstrated that Spi inhibited C6 and U87 cell proliferation and induced cell death. Histopathologic results showed that the administration of Spi could delay the development of tumors and prolonged the survival of tumor-bearing animals. Furthermore, Spi significantly upregulated miR-34a and miR-125b that have a key role in the progression of PI3K/AKT/mTOR pathway. This is the first in vivo report on the chemo-preventive effect of Spi against glioblastoma, suggesting its potential use in the chemoprevention of this cancer and the antiglioma molecular mechanism of Spi.


Asunto(s)
Glioblastoma , MicroARNs , Microalgas , Spirulina , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
6.
Biomed Eng Online ; 19(1): 69, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883300

RESUMEN

Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold's internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.


Asunto(s)
Huesos/citología , Impresión Tridimensional , Andamios del Tejido , Diseño Asistido por Computadora , Humanos , Ingeniería de Tejidos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38804561

RESUMEN

The optimal design of complex engineering systems requires tracing precise mathematical modeling of the system's behavior as a function of a set of design variables to achieve the desired design. Despite the success of current tibial components of knee implants, the limited lifespan remains the main concern of these complex systems. The mismatch between the properties of engineered biomaterials and those of biological materials leads to inadequate bonding with bone and the stress-shielding effect. Exploiting a functionally graded material for the stem of the tibial component of knee implants is attractive because the properties can be designed to vary in a certain pattern, meeting the desired requirements at different regions of the knee joint system. Therefore, in this study, a Ti6Al4V/Hydroxyapatite functionally graded stem with a laminated structure underwent simulation-based multi-objective design optimization for a tibial component of the knee implant. Employing finite element analysis and response surface methodology, three material design variables (stem's central diameter, gradient factor, and number of layers) were optimized for seven objective functions related to stress-shielding and micro-motion (including Maximum stress on the cancellous bone, maximum and mean stresses on predefined paths, the standard deviation of mean stress on paths, maximum and mean micro-motions at the bone-implant interface and the standard deviation of mean micro-motion). Then, the optimized functionally graded stem with 6 layers, a central diameter of 5.59 mm, and a gradient factor of 1.31, was compared with a Ti6Al4V stem for various responses. In stress analysis, the optimal stem demonstrated a 1.92% improvement in cancellous bone stress while it had no considerable influence on the maximum, mean, and standard deviation of stresses on paths. In micro-motion analysis, the maximum, mean, and standard deviation of mean micro-motion at the interface were enhanced by 24.31%, 39.53%, and 19.77%, respectively.

8.
Biomed Tech (Berl) ; 69(4): 367-382, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38258440

RESUMEN

OBJECTIVES: The biological performance of aluminum oxide-titanium (Al2O3-Ti) composites requires special attention to achieve improved osteoblastic differentiation, and subsequent osseointegration/strong anchorage with the surrounding bone. Therefore, the aim of this study was to improve them by providing calcium phosphate (Ca-P)/bovine serum albumin (BSA) coating on their surfaces. METHODS: Ca-P/BSA coatings were prepared on the surfaces of 75vol.%Ti composites (75Ti-BSA) and pure Ti (100Ti-BSA as a control). The surface characteristics, phase analysis, micro-hardness, BSA release profile and biological responses including cytotoxicity, cell viability, differentiation, mineralization, and cell adhesion were evaluated. RESULTS: The results showed that lower cytotoxicity% and higher mitochondrial activity or viability % were associated with the samples with Ca-P/BSA coatings (particularly 75Ti-BSA having 21.3% cytotoxicity, 111.4% and 288.6% viability at day 1 and 7, respectively). Furthermore, the Ca-P/BSA coating could highly enhance the differentiation of pre-osteoblast cells into osteoblasts in 75Ti-BSA group (ALP concentration of 4.8 ng/ml). However, its influence on cell differentiation in 100Ti-BSA group was negligible. Similar results were also obtained from mineralization assay. The results on cell adhesion revealed that the Ca-P/BSA coated samples differently interacted with MC3T3-E1 cells; enlarged flat cells on 75Ti-BSA vs more spindle-shaped cells on 100Ti-BSA. CONCLUSIONS: Ca-P/BSA coated Al2O3-Ti provided promising biological performance, superior to that of uncoated composites. Therefore, they have the potential to improve implant osseointegration.


Asunto(s)
Óxido de Aluminio , Fosfatos de Calcio , Diferenciación Celular , Osteoblastos , Albúmina Sérica Bovina , Titanio , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteoblastos/citología , Albúmina Sérica Bovina/química , Óxido de Aluminio/química , Óxido de Aluminio/farmacología , Titanio/química , Titanio/farmacología , Diferenciación Celular/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Bovinos , Supervivencia Celular/efectos de los fármacos , Oseointegración/efectos de los fármacos , Oseointegración/fisiología , Propiedades de Superficie , Ratones
9.
Int J Biol Macromol ; 270(Pt 1): 132361, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750857

RESUMEN

Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats. After a healing period of four and eight weeks, the new bone of blank, M-PCL, and M-PCL/TG-BG groups were harvested and assessed. Micro-computed tomography, histological, biochemical, and biomechanical analyses, gene expression, and bone matrix formation were used to assess bone regeneration. The micro-computed tomography results showed that the M-PCL/TG-BG scaffolds not only induced bone tissue formation within the bone defect but also increased BMD and BV/TV compared to blank and M-PCL groups. According to the histological analysis, there was no evidence of bony union in the calvarial defect regions of blank groups, while in M-PCL/TG-BG groups bony integration and repair were observed. The M-PCL/TG-BG scaffolds promoted the Runx2 and collagen type I expression as compared with blank and M-PCL groups. Besides, the bone regeneration in M-PCL/TG-BG groups correlated with TG-BG incorporation. Moreover, the use of M-PCL/TG-BG scaffolds promoted the biomechanical properties in the bone remodeling process. These data demonstrated that the M-PCL/TG-BG scaffolds serve as a highly promising platform for the development of bone grafts, supporting bone regeneration with bone matrix formation, and osteogenic features. Our results exhibited that the 3D-printed M-PCL/TG-BG scaffolds are a promising strategy for successful bone regeneration.


Asunto(s)
Regeneración Ósea , Vidrio , Osteogénesis , Poliésteres , Impresión Tridimensional , Ratas Wistar , Cráneo , Andamios del Tejido , Animales , Poliésteres/química , Andamios del Tejido/química , Ratas , Regeneración Ósea/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/patología , Cráneo/lesiones , Cráneo/diagnóstico por imagen , Osteogénesis/efectos de los fármacos , Femenino , Vidrio/química , Tragacanto/química , Microtomografía por Rayos X , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
10.
Mater Today Bio ; 23: 100872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075257

RESUMEN

Tissue-engineered bone substitutes, characterized by favorable physicochemical, mechanical, and biological properties, present a promising alternative for addressing bone defects. In this study, we employed an innovative 3D host-guest scaffold model, where the host component served as a mechanical support, while the guest component facilitated osteogenic effects. More specifically, we fabricated a triangular porous polycaprolactone framework (host) using advanced 3D printing techniques, and subsequently filled the framework's pores with tragacanth gum-45S5 bioactive glass as the guest component. Comprehensive assessments were conducted to evaluate the physical, mechanical, and biological properties of the designed scaffolds. Remarkably, successful integration of the guest component within the framework was achieved, resulting in enhanced bioactivity and increased strength. Our findings demonstrated that the scaffolds exhibited ion release (Si, Ca, and P), surface apatite formation, and biodegradation. Additionally, in vitro cell culture assays revealed that the scaffolds demonstrated significant improvements in cell viability, proliferation, and attachment. Significantly, the multi-compartment scaffolds exhibited remarkable osteogenic properties, indicated by a substantial increase in the expression of osteopontin, osteocalcin, and matrix deposition. Based on our results, the framework provided robust mechanical support during the new bone formation process, while the guest component matrix created a conducive micro-environment for cellular adhesion, osteogenic functionality, and matrix production. These multi-compartment scaffolds hold great potential as a viable alternative to autografts and offer promising clinical applications for bone defect repair in the future.

11.
ACS Omega ; 8(8): 7378-7394, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36873019

RESUMEN

Polycaprolactone scaffolds were designed and 3D-printed with different pore shapes (cube and triangle) and sizes (500 and 700 µm) and modified with alkaline hydrolysis of different ratios (1, 3, and 5 M). In total, 16 designs were evaluated for their physical, mechanical, and biological properties. The present study mainly focused on the pore size, porosity, pore shapes, surface modification, biomineralization, mechanical properties, and biological characteristics that might influence bone ingrowth in 3D-printed biodegradable scaffolds. The results showed that the surface roughness in treated scaffolds increased compared to untreated polycaprolactone scaffolds (R a = 2.3-10.5 nm and R q = 17- 76 nm), but the structural integrity declined with an increase in the NaOH concentration especially in the scaffolds with small pores and a triangle shape. Overall, the treated polycaprolactone scaffolds particularly with the triangle shape and smaller pore size provided superior performance in mechanical strength similar to that of cancellous bone. Additionally, the in vitro study showed that cell viability increased in the polycaprolactone scaffolds with cubic pore shapes and small pore sizes, whereas mineralization was enhanced in the designs with larger pore sizes. Based on the results obtained, this study demonstrated that the 3D-printed modified polycaprolactone scaffolds exhibit a favorable mechanical property, biomineralization, and better biological properties; therefore, they can be applied in bone tissue engineering.

12.
J Cancer Res Ther ; 19(5): 1311-1315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37787300

RESUMEN

Purpose: The present study aimed to assess the effects of extremely low-frequency electromagnetic fields (ELF-MF) on structural changes of human osteosarcoma cells by analyzing the stained cytoskeleton for assessing the relationship between the fractal dimension parameter and proliferation rate of radiation-induced cells. Materials and Methods: In this study, 2-mT magnetic fields with various waveforms, including sinusoidal, triangular, and pulsed shapes, were employed to determine the biological effects of ELF-EMF on the human osteosarcoma MG-63 cell line. All experiments were performed in two modes: continuous exposure at 3 h and fractionated irradiations at 3 consecutive days. Afterward, the proliferation assay was implemented for assessing the cell proliferation in each group. Moreover, immunofluorescence staining and confocal imaging were performed to determine the cell shape index. Furthermore, fractal dimension analysis was carried out by processing morphological images. Results: The proliferation and shape index parameters of radiation-induced osteosarcomas significantly decreased compared with non-irradiated cells. In addition, fractal dimensions significantly increased following fractionated exposure at 3 consecutive days. Conclusions: Assessing the fractal dimensions can be considered as a new morphological index for the prognosis of the structural remodeling of human osteosarcoma cells in response to fractionated irradiation of ELF-MF. In addition, various waveforms induce a similar effect on morphological remodeling and cell proliferation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Campos Electromagnéticos , Campos Magnéticos , Proliferación Celular
13.
Bioimpacts ; 12(3): 247-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677667

RESUMEN

Introduction: Alumina-titanium (Al2O3-Ti) composites with enhanced mechanical and corrosion properties have been recently developed for potential applications in orthopaedics and hard tissue replacements. However, before any clinical use, their interactions with biological environment must be examined. Methods: The aim of this study, therefore, was to assess the biocompatibility of three Al2O3-Ti composites having 25, 50, and 75 volume percentages of titanium. These materials were made by spark plasma sintering (SPS), and MC3T3-E1 cells were cultured onto the sample discs to evaluate the cell viability, proliferation, differentiation, mineralization, and adhesion. Furthermore, the apatite formation ability and wettability of the composites were analysed. Pure Ti (100Ti) and monolithic Al2O3 (0Ti) were also fabricated by SPS and biological characteristics of the composites were compared with them. Results: The results showed that cell viability to 75Ti (95.0%), 50Ti (87.3%), and 25Ti (63.9%) was superior when compared with 100Ti (42.7%). Pure Al2O3 also caused very high cell viability (89.9%). Furthermore, high cell proliferation was seen at early stage for 50Ti, while the cells exposed to 75Ti proliferated more at late stages. Cell differentiation was approximately equal between different groups, and increased by time. Matrix mineralization was higher on the composite surfaces rather than on 0Ti and 100Ti. Moreover, the cells adhered differently to the surfaces of different biomaterials where more spindle-shaped configuration was found on 100Ti, slightly enlarged cells with dendritic shape and early pseudopodia were observed on 75Ti, and more enlarged cells with long dendritic extensions were found on 0Ti, 25Ti, and 50Ti. The results of EDS analysis showed that both Ca and P deposited on the surfaces of all materials, after 20 days of immersion in SBF. Conclusion: Our in-vitro findings demonstrated that the 75Ti, 50Ti, and 25Ti composites have high potential to be used as load-bearing orthopedic materials.

14.
J Orthop Surg Res ; 17(1): 320, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725606

RESUMEN

In this paper, the in-vivo healing of critical-sized bony defects by cell-free and stem cell-seeded 3D-printed PLA scaffolds was studied in rat calvaria bone. The scaffolds were implanted in the provided defect sites and histological analysis was conducted after 8 and 12 weeks. The results showed that both cell-free and stem cell-seeded scaffolds exhibited superb healing compared with the empty defect controls, and new bone and connective tissues were formed in the healing site after 8 and 12 weeks, postoperatively. The higher filled area, bone formation and bone maturation were observed after 12 weeks, particularly for PLA + Cell scaffolds.


Asunto(s)
Regeneración Ósea , Andamios del Tejido , Animales , Osteogénesis , Poliésteres , Impresión Tridimensional , Ratas , Cráneo/diagnóstico por imagen , Cráneo/cirugía , Células Madre , Ingeniería de Tejidos/métodos
15.
Dent Res J (Isfahan) ; 18: 58, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497693

RESUMEN

BACKGROUND: The margin of crown is a significant area for plaque accumulations. Therefore, the ability of the cement to seal the margin is very important. The aim of the present study was to evaluate the bond (retentive) strength, microleakage, and failure mode of four different types of cements in stainless steel crown (SSC) of primary molar teeth. MATERIALS AND METHODS: In this experimental study, eighty extracted primary molar teeth were divided into two groups of forty teeth to test the microleakage and bond strength. The crowns were cemented according to the manufacturer guidelines with four cement types including self-cure glass ionomer, resin-modified glass ionomer, polycarboxylate, and resin cements. Stereomicroscope and universal testing machine were used to measure the microleakage and bond strength, respectively. For calculating the surface area of crowns, three-dimensional scanning was used. Furthermore, the failure mode was examined after the bond strength test. The cements surfaces and the tooth-cement interfaces were evaluated using scanning electron microscopy (SEM). The obtained values were analyzed using SPSS-23 software through Shapiro-Wilk and one-way analysis of variance tests. Means, standard deviations, medians, and interquartile ranges were calculated. P < 0.05 was considered as statistically significant in all analyses. RESULTS: Significant differences between microleakage (P = 0.001) and failure mode (P = 0.041) of the four types of cements were obtained. However, the mean bond strengths of the four groups did not differ significantly (P = 0.124). The obtained SEM images confirmed the results of bond strength and microleakage. CONCLUSION: Resin cement and resin-modified glass ionomer, respectively, showed superior properties and are recommended for use in SSCs of primary molar teeth.

16.
Materials (Basel) ; 14(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34300785

RESUMEN

Porous Lattice Structure (PLS) scaffolds have shown potential applications in the biomedical domain. These implants' structural designs can attain compatibility mechanobiologically, thereby avoiding challenges related to the stress shielding effect. Different unit cell structures have been explored with limited work on the fabrication and characterization of titanium-based PLS with cubic unit cell structures. Hence, in the present paper, Ti6Al4V (Ti64) cubic PLS scaffolds were analysed by finite element (FE) analysis and fabricated using selective laser melting (SLM) technique. PLS of the rectangular shape of width 10 mm and height 15 mm (ISO: 13314) with an average pore size of 600-1000 µm and structure porosity percentage of 40-70 were obtained. It has been found that the maximum ultimate compressive strength was found to be 119 MPa of PLS with a pore size of 600 µm and an overall relative density (RD) of 57%. Additionally, the structure's failure begins from the micro-porosity formed during the fabrication process due to the improper melting along a plane inclined at 45 degree.

17.
J Orthop Surg Res ; 16(1): 79, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482866

RESUMEN

BACKGROUND: Alumina-titanium (Al2O3-Ti) biocomposites have been recently developed with improved mechanical properties for use in heavily loaded orthopedic sites. Their biological performance, however, has not been investigated yet. METHODS: The aim of the present study was to evaluate the in vivo biological interaction of Al2O3-Ti. Spark plasma sintering (SPS) was used to fabricate Al2O3-Ti composites with 25 vol.%, 50 vol.%, and 75 vol.% Ti content. Pure alumina and titanium were also fabricated by the same procedure for comparison. The fabricated composite disks were cut into small bars and implanted into medullary canals of rat femurs. The histological analysis and scanning electron microscopy (SEM) observation were carried out to determine the bone formation ability of these materials and to evaluate the bone-implant interfaces. RESULTS: The histological observation showed the formation of osteoblast, osteocytes with lacuna, bone with lamellar structures, and blood vessels indicating that the healing and remodeling of the bone, and vasculature reconstruction occurred after 4 and 8 weeks of implantation. However, superior bone formation and maturation were obtained after 8 weeks. SEM images also showed stronger interfaces at week 8. There were differences between the composites in percentages of bone area (TB%) and the number of osteocytes. The 50Ti composite showed higher TB% at week 4, while 25Ti and 75Ti represented higher TB% at week 8. All the composites showed a higher number of osteocytes compared to 100Ti, particularly 75Ti. CONCLUSIONS: The fabricated composites have the potential to be used in load-bearing orthopedic applications.


Asunto(s)
Óxido de Aluminio , Materiales Biocompatibles , Interfase Hueso-Implante/fisiología , Fémur/cirugía , Osteogénesis , Diseño de Prótesis , Implantación de Prótesis/métodos , Titanio , Animales , Remodelación Ósea , Fémur/fisiopatología , Osteoblastos/fisiología , Osteocitos/fisiología , Ratas , Factores de Tiempo
18.
ACS Biomater Sci Eng ; 7(12): 5397-5431, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34797061

RESUMEN

Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Regeneración Ósea , Huesos , Células Madre
19.
Tissue Cell ; 64: 101341, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32473711

RESUMEN

Seeding cells directly into a new medium subjects the cells to stress due to certain differences in medium formulation. As a result, it seems necessary for cells to be adapted to a new medium, in order to save the properties of the cells and to achieve reliable results from the tests. The MC3T3 osteoblastic cell line is recommended to be cultured in Alpha Minimum Essential Medium (α-MEM). However, Dulbecco's Modified Eagle's medium (DMEM) is widely used for its culture. Therefore, in the present paper, two sequential methodologies were applied to adapt the MC3T3 cells to DMEM. In sequential adaptation 1, 10 vol.% DMEM was added to the original medium every day, while in sequential adaptation 2, the old medium was changed to a new medium having 20 vol.% higher DMEM content after each passage. Cells were monitored and compared to direct cell adaptation, while they were growing. The results showed that in the direct cell adaptation, increase in the number of cells was very slow. In contrast, the two sequential adaptation processes were more efficient where sequential adaptation 2 resulted in a higher number of cells in fewer days; 88 % greater than sequential adaptation 1 when it was believed that the cells were adapted. Furthermore, the statistical analysis was conducted by stepwise regression analysis and mathematical models were provided, which can predict the number of cells by day of culture.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Osteoblastos/citología , Línea Celular , Proliferación Celular , Humanos
20.
Proc Inst Mech Eng H ; 234(2): 232-242, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31804148

RESUMEN

Nano-hydroxyapatite powder was used in electric discharge machining to modify the surface of Ti-6Al-4V medical alloy. Herein, electric discharge machining was performed, with and without powder-mixed flushing for evaluation of the material erosion rate and surface roughness. In addition to dielectric type, several process parameters including current, pulse-on duration, pulse-off duration, and electrode hole diameter were considered. The experiments were planned by Taguchi design technique and conducted to analyze the material erosion rate and surface roughness. After machining, scanning electron microscope, energy-dispersive X-ray spectrometry, and X-ray diffraction techniques were used to evaluate the surfaces of the samples. Furthermore, wear and corrosion tests were also carried out on the Ti alloy with modified surfaces. The influential factors were identified based on analysis of variance results. Current and dielectric type were the significant factors, both for the material erosion rate and surface roughness. The scanning electron microscope images of Ti-6Al-4V samples highlighted that the process parameters exhibited a vital influence on the topology and microstructure of machined surface. Furthermore, energy-dispersive X-ray spectrometry and X-ray diffraction analyses confirmed the presence of hydroxyapatite on Ti alloy surface after machining. Moreover, the results of wear and corrosion tests revealed lower wear and corrosion rates of the surface-treated workpiece with nano-hydroxyapatite.


Asunto(s)
Materiales Biocompatibles/química , Durapatita/química , Titanio/química , Aleaciones , Electroquímica , Electrodos , Nanoestructuras/química , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA