Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
EMBO Rep ; 25(3): 1208-1232, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291338

RESUMEN

Micropeptides encoded by short open reading frames (sORFs) within long noncoding RNAs (lncRNAs) are beginning to be discovered and characterized as regulators of biological and pathological processes. Here, we find that lncRNA Dleu2 encodes a 17-amino-acid micropeptide, which we name Dleu2-17aa, that is abundantly expressed in T cells. Dleu2-17aa promotes inducible regulatory T (iTreg) cell generation by interacting with SMAD Family Member 3 (Smad3) and enhancing its binding to the Foxp3 conserved non-coding DNA sequence 1 (CNS1) region. Importantly, the genetic deletion of Dleu2-17aa in mice by start codon mutation impairs iTreg generation and worsens experimental autoimmune encephalomyelitis (EAE). Conversely, the exogenous supplementation of Dleu2-17aa relieves EAE. Our findings demonstrate an indispensable role of Dleu2-17aa in maintaining immune homeostasis and suggest therapeutic applications for this peptide in treating autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , ARN Largo no Codificante , Animales , Ratones , Autoinmunidad , Péptidos/metabolismo , ARN Largo no Codificante/genética , Linfocitos T Reguladores/metabolismo
2.
J Cell Mol Med ; 28(12): e18478, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031628

RESUMEN

RFC4 is required for DNA polymerase δ and DNA polymerase ε to initiate DNA template expansion. Downregulated RFC4 inhibits tumour proliferation by causing S-phase arrest and inhibiting mitosis, resulting in the reduction of tumour cells. RFC4 has been implicated that it plays an important role in the initiation and progression of cancers, but a comprehensive analysis of the role of RFC4 in cancer has not been performed. We comprehensively analysed the expression, prognosis, methylation level, splicing level, relationship of RFC4 and immune infiltration, and pan-cancer immunotherapy response used various databases (including TCGA, GTEx, UALCAN, Oncosplicing, TIDE, TISCH, HPA and CAMOIP), and experimented its biological function in HCC. Through pan-cancer analysis, we found that RFC4 is significantly upregulated in most tumours. The tumour patients with high expression of RFC4 have poor prognosis. The methylation level and variable splicing level of RFC4 were abnormal in most tumours compared with the adjacent tissues. Furthermore, RFC4 was closely associated with immune cell infiltration in various cancers. RFC4 was significantly co-expressed with immune checkpoints and other immune-related genes. The expression of RFC4 could indicate the immunotherapy efficacy of some tumours. The RFC4 expression was associated with sensitivity to specific small molecule drugs. Cell experiments have shown that downregulated RFC4 can inhibit cell cycle and tumour cell proliferation. We conducted a systematic pan-cancer analysis of RFC4, and the results showed that RFC4 can serve as a biomarker for cancer diagnosis and prognosis. These findings open new perspectives for precision medicine.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias , Proteína de Replicación C , Microambiente Tumoral , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral/inmunología , Pronóstico , Proteína de Replicación C/metabolismo , Proteína de Replicación C/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Línea Celular Tumoral , Metilación de ADN , Proliferación Celular , Inmunoterapia/métodos
3.
Anal Chem ; 96(13): 5340-5347, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501977

RESUMEN

Fully integrated devices that enable full functioning execution without or with minimum external accessories or equipment are deemed to be one of the most desirable and ultimate objectives for modern device design and construction. Escherichia coli O157:H7 (E. coli O157:H7) is often linked to outbreaks caused by contaminated water and food. However, the sensors that are currently used for point-of-care E. coli O157:H7 (E. coli O157:H7) detection are often large and cumbersome. Herein, we demonstrate the first example of a handheld and pump-free fully integrated electrochemical sensing platform with the capability to point-of-care test E. coli O157:H7 in the actual samples of E. coli O157:H7-spiked tap water and E. coli O157:H7-spiked watermelon juice. This platform was made possible by overcoming major engineering challenges in the seamless integration of a microfluidic module for pump-free liquid sample collection and transportation, a sensing module for efficient E. coli O157:H7 testing, and an electronic module for automatically converting and wirelessly transmitting signals into a single and compact electrochemical sensing platform that retains its inimitable stand-alone, handheld, pump-free, and cost-effective feature. Although our primary emphasis in this study is on detecting E. coli O157:H7, this pump-free fully integrated handheld electrochemical sensing platform may also be used to monitor other pathogens in food and water by including specific antipathogen antibodies.


Asunto(s)
Escherichia coli O157 , Anticuerpos , Pruebas en el Punto de Atención , Sistemas de Atención de Punto , Agua , Microbiología de Alimentos
4.
Chembiochem ; 25(15): e202400346, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775416

RESUMEN

Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.


Asunto(s)
Aminas , Monoaminooxidasa , Polímeros , Aminas/química , Aminas/metabolismo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Polímeros/química , Polímeros/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/química , Catalasa/química , Catalasa/metabolismo , Indoles/química , Indoles/metabolismo , Estereoisomerismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Oxidación-Reducción , Nanopartículas/química , Biocatálisis , Compuestos de Organosilicio/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Catálisis
5.
BMC Cancer ; 24(1): 636, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789995

RESUMEN

BACKGROUND: Neuroendocrine carcinoma (NEC) originating from the endometrium is rare, and there is limited knowledge regarding its diagnosis and optimal management. In this study, we present our experience with 11 patients with endometrial NEC, aiming to provide guidance for clinical practice. METHODS: We retrospectively collected the clinical, pathological, and treatment data of 11 patients with endometrial NEC who were treated at the First Affiliated Hospital of Zhengzhou University from January 2011 to July 2023. The clinicopathological characteristics, treatment and prognosis of these patients were analyzed. RESULTS: The median age of the patients was 55.0 (39.0-64.0) years, and the median tumor size was 40.0 (33.0-60.0) mm. Irregular vaginal bleeding was the most common symptom observed in 10 out of 11 patients, while metabolic syndrome occurred in only 2 out of 11 patients. Six out of the 11 patients were diagnosed at an early stage. Among the patients, 6 were diagnosed with endometrial NECs, while the remaining patients had a combination of endometrial NEC and other non-NEC endometrial carcinomas. All patients underwent surgery, except for one who received only chemotherapy due to multiple metastases. After surgery, adjuvant chemotherapy was administered to 5 patients, chemotherapy combined with radiotherapy was given to 3 patients, and 2 patients did not receive any adjuvant therapy. A total of 10 patients completed the follow-up, with a median follow-up time of 51.0 (14.3-81.0) months. Unfortunately, 2 patients died from the disease. CONCLUSION: NECs originating from the endometrium might not be affected by metabolic disorders. Preoperative diagnosis of these tumors was challenging. The primary approach for managing endometrial NEC can be multimodal treatment centered around surgery.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Endometriales , Humanos , Femenino , Neoplasias Endometriales/patología , Neoplasias Endometriales/terapia , Neoplasias Endometriales/mortalidad , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/terapia , Carcinoma Neuroendocrino/mortalidad , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Pronóstico , Quimioterapia Adyuvante , Endometrio/patología , Estadificación de Neoplasias
6.
Mol Cell Biochem ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38341833

RESUMEN

BACKGROUND: WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS: The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS: WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION: Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38995188

RESUMEN

A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with Noviherbaspirillum aerium 122213-3T, exhibiting 98.4 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with N. aerium 122213-3T, thus forming a distinct phylogenetic lineage within the genus Noviherbaspirillum. The average nucleotide identity and digital DNA-DNA hybridization values between strain I16B-00201T and N. aerium 122213-3T were 84.6 and 29.4 %, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10 %) were summed feature 3 (C16:1ω6c/C16:1ω7c, 43.3 %), summed feature 8 (C18:1ω7c/C18:1ω6c, 15.9 %) and C12:0 (11.0 %). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201T represented a novel species of the genus Noviherbaspirillum, for which the name Noviherbaspirillum album sp. nov. is proposed, with I16B-00201T (=CPCC 100848T=KCTC 52095T) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some Noviherbaspirillum species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.


Asunto(s)
Microbiología del Aire , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Ubiquinona , ARN Ribosómico 16S/genética , Beijing , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis
8.
Environ Sci Technol ; 58(33): 14940-14948, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105779

RESUMEN

Low concentrations of nitrate (NO3-) widely exist in wastewater, post-treated wastewater, and natural environments; its further disposal is a challenge but meaningful for its discharge goals. Electroreduction of NO3- is a promising method that allows to eliminate NO3- and even generate higher-value NH3. However, the massive side reaction of hydrogen evolution has raised great obstacles in the electroreduction of low concentrations of NO3-. Herein, we present an efficient electroreduction method for low or even ultralow concentrations of NO3- via NO3- self-enrichment and active hydrogen (H*) inducement on the Ce(IV)-Co3O4 cathode. The key mechanism is that the strong oxytropism of Ce(IV) in Co3O4 resulted in two changes in structures, including loose nanoporous structures with copious dual adsorption sites of Ce-Co showing strong self-enrichment of NO3- and abundant oxygen vacancies (Ovs) inducing substantial H*. Ultimately, the bifunctional role synergistically promoted the selective conversion of NH3 rather than H2. As a result, Ce(IV)-Co3O4 demonstrated a NO3- self-enrichment with a 4.3-fold up-adsorption, a 7.5-fold enhancement of NH3 Faradic efficiency, and a 93.1% diminution of energy consumption when compared to Co3O4, substantially exceeding other reported electroreduction cathodes for NO3- concentrations lower than 100 mg·L-1. This work provides an effective treatment method for low or even ultralow concentrations of NO3-.


Asunto(s)
Electrodos , Nitratos , Nitratos/química , Hidrógeno/química , Cerio/química
9.
Mol Divers ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158620

RESUMEN

The pachysandra alkaloids found in Sarcococca ruscifolia demonstrate notable anti-hepatocellular carcinoma activity. Despite their efficacy, the structural diversity of these compounds remains limited, and their precise antitumor mechanism is still unclear. In pursuit of identifying novel lead compounds with high efficacy and low toxicity for combating hepatocellular carcinoma, twenty-three compounds of C20-ketone pachysandra alkaloid derivatives were designed and synthesized by using 3-dimethylamine pachysandra alkaloids as scaffolds. Subsequent in vitro anticancer activity experiments showed that synthetic pachysandra alkaloids had a stronger effect on HepG2 cells than did their natural counterparts, with low toxicity and high selectivity. The most potent derivative, 6k, had an IC50 value of 0.75 µM, demonstrating 25.7-fold greater anticancer activity than sarcovagine D against HepG2 cells. Through network pharmacology and molecular docking analysis, it was revealed that synthetic pachysandra alkaloids may exert their effects by inhibiting the JAK2/STAT3 pathway, thereby preventing the proliferation of liver cancer cells. Further research through scratch tests, immunofluorescence experiments, and Western blot analysis revealed that compound 6k effectively inhibited the migration of HepG2 cells and induced mitochondria-mediated intrinsic apoptosis of HepG2 cells by regulating the JAK2/STAT3 signaling pathway. The aforementioned results indicate that compound 6k could be developed as a potential candidate for the treatment of hepatocellular carcinoma.

10.
BMC Womens Health ; 24(1): 36, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218831

RESUMEN

BACKGROUND: Vaginectomy has been shown to be effective for select patients with vaginal high-grade squamous intraepithelial lesions (HSIL) and is favored by gynecologists, while there are few reports on the robotic-assisted laparoscopic vaginectomy (RALV). The aim of this study was to evaluate the safety and treatment outcomes between RALV and the conventional laparoscopic vaginectomy (CLV) for patients with vaginal HSIL. METHODS: This retrospective cohort study was conducted in 109 patients with vaginal HSIL who underwent either RALV (RALV group) or CLV (CLV group) from December 2013 to May 2022. The operative data, homogeneous HPV infection regression rate and vaginal HSIL regression rate were compared between the two groups. Student's t-test, the Mann-Whitney U test, Pearson χ2 test or the Fisher exact test, Kaplan-Meier survival analysis and Cox proportional-hazards models were used for data analysis. RESULTS: There were 32 patients in the RALV group and 77 patients in the CLV group. Compared with the CLV group, patients in the RALV group demonstrated less estimated blood loss (41.6 ± 40.3 mL vs. 68.1 ± 56.4 mL, P = 0.017), lower intraoperative complications rate (6.3% vs. 24.7%, P = 0.026), and shorter flatus passing time (2.0 (1.0-2.0) vs. 2.0 (2.0-2.0), P < 0.001), postoperative catheterization time (2.0 (2.0-3.0) vs. 4.0 (2.0-6.0), P = 0.001) and postoperative hospitalization time (4.0 (4.0-5.0) vs. 5.0 (4.0-6.0), P = 0.020). In addition, the treatment outcomes showed that both RALV group and CLV group had high homogeneous HPV infection regression rate (90.0% vs. 92.0%, P > 0.999) and vaginal HSIL regression rate (96.7% vs. 94.7%, P = 0.805) after vaginectomy. However, the RALV group had significantly higher hospital costs than that in the CLV group (53035.1 ± 9539.0 yuan vs. 32706.8 ± 6659.2 yuan, P < 0.001). CONCLUSIONS: Both RALV and CLV can achieve satisfactory treatment outcomes, while RALV has the advantages of less intraoperative blood loss, fewer intraoperative complications rate and faster postoperative recovery. Robotic-assisted surgery has the potential to become a better choice for vaginectomy in patients with vaginal HSIL without regard to the burden of hospital costs.


Asunto(s)
Laparoscopía , Infecciones por Papillomavirus , Procedimientos Quirúrgicos Robotizados , Lesiones Intraepiteliales Escamosas , Femenino , Embarazo , Humanos , Estudios Retrospectivos , Colpotomía , Pérdida de Sangre Quirúrgica
11.
Respiration ; 103(8): 461-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38663359

RESUMEN

INTRODUCTION: Although long-term macrolide antibiotics could reduce the recurrent exacerbation of chronic obstructive pulmonary disease (COPD), the side effect of bacterial resistance and the impact on the microbiota remain concerning. We investigated the influence of long-term erythromycin treatment on the airway and gut microbiota in mice with emphysema and patients with COPD. METHODS: We conducted 16S rRNA gene sequencing to explore the effect of erythromycin treatment on the lung and gut microbiota in mice with emphysema. Liquid chromatography-mass spectrometry was used for lung metabolomics. A randomized controlled trial was performed to investigate the effect of 48-week erythromycin treatment on the airway and gut microbiota in COPD patients. RESULTS: The mouse lung and gut microbiota were disrupted after cigarette smoke exposure. Erythromycin treatment depleted harmful bacteria and altered lung metabolism. Erythromycin treatment did not alter airway or gut microbial diversity in COPD patients. It reduced the abundance of pathogens, such as Burkholderia, in the airway of COPD patients and increased levels of symbiotic bacteria, such as Prevotella and Veillonella. The proportions of Blautia, Ruminococcus, and Lachnospiraceae in the gut were increased in COPD patients after erythromycin treatment. The time to the first exacerbation following treatment was significantly longer in the erythromycin treatment group than in the COPD group. CONCLUSION: Long-term erythromycin treatment reduces airway and gut microbe abundance in COPD patients but does not affect microbial diversity and restores microbiota balance in COPD patients by reducing the abundance of pathogenic bacteria.


Asunto(s)
Antibacterianos , Eritromicina , Microbioma Gastrointestinal , Enfermedad Pulmonar Obstructiva Crónica , Eritromicina/administración & dosificación , Eritromicina/farmacología , Animales , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Humanos , Anciano , Persona de Mediana Edad , Femenino , Pulmón/microbiología , Pulmón/efectos de los fármacos , Enfisema Pulmonar/microbiología , Enfisema Pulmonar/tratamiento farmacológico , Ratones Endogámicos C57BL , ARN Ribosómico 16S
12.
J Mater Sci Mater Med ; 35(1): 22, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526601

RESUMEN

Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF2 and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 µm) and interconnected pores (150-200 µm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF2 coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.


Asunto(s)
Procedimientos de Cirugía Plástica , Porosidad , Apatitas , Zinc
13.
Ecotoxicol Environ Saf ; 283: 116822, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096686

RESUMEN

Antimony (Sb) poses a significant ecological threat. This study combines biochemical, pathological, transcriptome, and metabolome analyses to assess the short-term (14-day) toxic impact of two Sb levels (25 mg/kg and 125 mg/kg) on earthworms (Eisenia fetida). Higher Sb concentration caused severe intestinal damage, elevated metallothionein (MT) levels, and reduced antioxidant capacity. Metabolome analysis identifies 404 and 1698 significantly differential metabolites in the two groups. Metabolites such as S(-)-cathinone, N-phenyl-1-naphthylamine, serotonin, 4-hydroxymandelonitrile, and 5-fluoropentylindole contributed to the metabolic responses to Sb stress. Transcriptome analysis shows increased chitin synthesis as a protective response, impacting amino sugar and nucleotide sugar metabolism for cell wall synthesis and damage repair. Integrated analysis indicated that 5 metabolite-gene pairs were found in two Sb levels and 11 enriched pathways were related to signal transduction, carbohydrate metabolism, immune system, amino acid metabolism, digestive system, and nervous system. Therefore, the integration of multiomics approaches enhanced our comprehension of the molecular mechanisms underlying the toxicity of Sb in E. fetida.

14.
Ecotoxicol Environ Saf ; 277: 116326, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640800

RESUMEN

The available information regarding the impact of antimony (Sb), a novel environmental pollutant, on the intestinal microbiota and host health is limited. In this study, we conducted physiological characterizations to investigate the response of adult zebrafish to different environmental concentrations (0, 30, 300, and 3000 µg/L) of Sb over a period of 14 days. Biochemical and pathological changes demonstrated that Sb effectively compromised the integrity of the intestinal physical barrier and induced inflammatory responses as well as oxidative stress. Analysis of both intestinal microbial community and metabolome revealed that exposure to 0 and 30 µg/L of Sb resulted in similar microbiota structures; however, exposure to 300 µg/L altered microbial communities' composition (e.g., a decline in genus Cetobacterium and an increase in Vibrio). Furthermore, exposure to 300 µg/L significantly decreased levels of bile acids and glycerophospholipids while triggering intestinal inflammation but activating self-protective mechanisms such as antibiotic presence. Notably, even exposure to 30 µg/L of Sb can trigger dysbiosis of intestinal microbiota and metabolites, potentially impacting fish health through the "microbiota-intestine-brain axis" and contributing to disease initiation. This study provides valuable insights into toxicity-related information concerning environmental impacts of Sb on aquatic organisms with significant implications for developing management strategies.


Asunto(s)
Antimonio , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antimonio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica
15.
Ecotoxicol Environ Saf ; 278: 116432, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728947

RESUMEN

Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.


Asunto(s)
Cadmio , Proteus mirabilis , Contaminantes del Suelo , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental
16.
Ren Fail ; 46(1): 2349139, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38712768

RESUMEN

BACKGROUND: NOP2/Sun RNA methyltransferase 5 (NSUN5) is an RNA methyltransferase that has a broad distribution and plays critical roles in various biological processes. However, our knowledge of the biological functions of NSUN5 in mammals is very limited. Therefore, in this study, we investigate the role of NSUN5 in mice. METHODS: In the present research, we built a mouse model (Nsun5-/-) using the CRISPR/Cas9 system to investigated the specific role of NSUN5. RESULTS: We observed that Nsun5-/- mice had a reduced body weight compared to wild-type mice. Additionally, their survival rate gradually decreased to 20% after postnatal day (PD) 21. Further examination revealed the Nsun5-/- mice had multiple organ damage, with the most severe damage occurring in the kidneys. Moreover, we observed glycogen deposition and fibrosis, along with a notable shorting of the primary foot processes of glomeruli in Nsun5-/- kidneys. Furthermore, we found that the kidneys of Nsun5-/- mice showed increased expression of the apoptotic signal Caspase-3 and accumulated stronger DNA damage at PD 21. CONCLUSIONS: In our study, we found that mice lacking NSUN5 died before puberty due to kidney fatal damage caused by DNA damage and cell apoptosis. These results suggest that NSUN5 plays a vital role in preventing the accumulation of DNA damage and cell apoptosis in the kidney.


Asunto(s)
Enfermedades Renales , Metiltransferasas , Animales , Masculino , Ratones , Apoptosis , Caspasa 3/metabolismo , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Daño del ADN , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Metiltransferasas/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Artículo en Inglés | MEDLINE | ID: mdl-39150530

RESUMEN

ε-Poly-L-lysine (ε-PL) is a natural and wide-spectrum antimicrobial additive. In this study, the production of ε-PL by Streptomyces albulus FQF-24 using cassava starch (CS) as carbon source and the effects of different feeding methods were investigated in a fermenter. The initial shake flask experiments demonstrated the efficient production of ε-PL with CS, achieving the ε-PL production of 1.18 g/L. Subsequent investigations in the fermenter identified that the ideal pH was 3.8 during the ε-PL synthesis phase. Under this condition, the production of ε-PL reached 1.35 g/L. When the pH was maintained at 3.8, the investigation of improvement of feeding composition was carried out in a 5 L fermenter. The intermittent feeding containing CS, inorganic and organic nitrogen sources resulted in the maximum ε-PL production and dry cell weight (DCW) reaching 17.17 g/L and 42.73 g/L. Additionally, continuous feeding with the composition of CS, organic and inorganic nitrogen sources, and inorganic salts further increased ε-PL production and DCW to 27.56 g/L and 38.5 g/L. Summarily, the above results indicate that the fermentation using low-cost CS and continuous feeding strategy with whole medium composition can provide a beneficial reference for the efficient production of ε-PL.

18.
J Asian Nat Prod Res ; : 1-16, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975979

RESUMEN

Three chromomycin derivatives, chromomycins A3 (1, CA3), A5 (2, CA5), and monodeacetylchromomycin A3 (3, MDA-CA3), were identified from the soil-derived Streptomyces sp. CGMCC 26516. A reinvestigation of the structure of CA5 is reported, of which the absolute configuration was unambiguously determined for the first time to be identical with that of CA3 based on nuclear magnetic resonance (NMR) data analysis as well as NMR and electronic circular dichroism calculations. Compounds 1-3 showed potent cytotoxicity against the non-small-cell lung cancer (NSCLC) cells (A549, H460, H157-c-FLIP, and H157-LacZ) and down-regulated the protein expression of c-FLIP in A549 cells. The IC50 values of chromomycins in H157-c-FLIP were higher than that in H157-LacZ. Furthermore, si-c-FLIP promoted anti-proliferation effect of chromomycins in NSCLC cells. In nude mice xenograft model, 1 and 2 both showed more potent inhibition on the growth of H157-lacZ xenografts than that of H157-c-FLIP xenografts. These results verify that c-FLIP mediates the anticancer effects of chromomycins in NSCLC.

19.
Entropy (Basel) ; 26(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920457

RESUMEN

In the realm of cardiac research, the control of spiral waves and turbulent states has been a persistent focus for scholars. Among various avenues of investigation, the modulation of ion currents represents a crucial direction. It has been proved that the methods involving combined control of currents are superior to singular approaches. While previous studies have proposed some combination strategies, further reinforcement and supplementation are required, particularly in the context of controlling arrhythmias through the combined regulation of two potassium ion currents. This study employs the Luo-Rudy phase I cardiac model, modulating the maximum conductance of the time-dependent potassium current and the time-independent potassium current, to investigate the effects of this combined modulation on spiral waves and turbulent states. Numerical simulation results indicate that, compared to modulating a single current, combining reductions in the conductance of two potassium ion currents can rapidly control spiral waves and turbulent states in a short duration. This implies that employing blockers for both potassium ion currents concurrently represents a more efficient control strategy. The control outcomes of this study represent a novel and effective combination for antiarrhythmic interventions, offering potential avenues for new antiarrhythmic drug targets.

20.
Yi Chuan ; 46(6): 478-489, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38886151

RESUMEN

Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing il34 in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.


Asunto(s)
Metronidazol , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Pez Cebra , Animales , Metronidazol/farmacología , Metronidazol/efectos adversos , Regeneración de la Medula Espinal/efectos de los fármacos , Traumatismos de la Médula Espinal/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA