Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014912

RESUMEN

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Asunto(s)
Retrovirus Endógenos , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Pez Cebra , Inmunidad Humoral , Inmunoglobulina M , Enfermedades de los Peces/genética
2.
J Neurosci ; 43(14): 2460-2468, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868859

RESUMEN

Charged moieties in the outer hair cell (OHC) membrane motor protein, prestin, are driven by transmembrane voltage to power OHC electromotility (eM) and cochlear amplification (CA), an enhancement of mammalian hearing. Consequently, the speed of prestin's conformational switching constrains its dynamic influence on micromechanics of the cell and the organ of Corti. Corresponding voltage-sensor charge movements in prestin, classically assessed as a voltage-dependent, nonlinear membrane capacitance (NLC), have been used to gauge its frequency response, but have been validly measured only out to 30 kHz. Thus, controversy exists concerning the effectiveness of eM in supporting CA at ultrasonic frequencies where some mammals can hear. Using megahertz sampling of guinea pig (either sex) prestin charge movements, we extend interrogations of NLC into the ultrasonic range (up to 120 kHz) and find an order of magnitude larger response at 80 kHz than previously predicted, indicating that an influence of eM at ultrasonic frequencies is likely, in line with recent in vivo results (Levic et al., 2022). Given wider bandwidth interrogations, we also validate kinetic model predictions of prestin by directly observing its characteristic cut-off frequency under voltage-clamp as the intersection frequency (Fis), near 19 kHz, of the real and imaginary components of complex NLC (cNLC). The frequency response of prestin displacement current noise determined from either the Nyquist relation or stationary measures aligns with this cut-off. We conclude that voltage stimulation accurately assesses the spectral limits of prestin activity, and that voltage-dependent conformational switching is physiologically significant in the ultrasonic range.SIGNIFICANCE STATEMENT The motor protein prestin powers outer hair cell (OHC) electromotility (eM) and cochlear amplification (CA), an enhancement of high-frequency mammalian hearing. The ability of prestin to work at very high frequencies depends on its membrane voltage-driven conformation switching. Using megahertz sampling, we extend measures of prestin charge movement into the ultrasonic range and find response magnitude at 80 kHz an order of magnitude larger than previously estimated, despite confirmation of previous low pass characteristic frequency cut-offs. The frequency response of prestin noise garnered by the admittance-based Nyquist relation or stationary noise measures confirms this characteristic cut-off frequency. Our data indicate that voltage perturbation provides accurate assessment of prestin performance indicating that it can support cochlear amplification into a higher frequency range than previously thought.


Asunto(s)
Células Ciliadas Auditivas Externas , Ultrasonido , Animales , Cobayas , Células Ciliadas Auditivas Externas/fisiología , Cóclea , Audición , Membrana Celular/metabolismo , Mamíferos
3.
Small ; : e2401429, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808805

RESUMEN

Plastics serve as an essential foundation in contemporary society. Nevertheless, meeting the rigorous performance demands in advanced applications and addressing their end-of-life disposal are two critical challenges that persist. Here, an innovative and facile method is introduced for the design and scalable production of polycarbonate, a key engineering plastic, simultaneously achieving high performance and closed-loop chemical recyclability. The bisphenol framework of polycarbonate is strategically adjusted from the low-bond-dissociation-energy bisphenol A to high-bond-dissociation-energy 4,4'-dihydroxydiphenyl, in combination with the incorporation of polysiloxane segments. As expected, the enhanced bond dissociation energy endows the polycarbonate with an extremely high glow-wire flammability index surpassing 1025 °C, a 0.8 mm UL-94 V-0 rating, a high LOI value of 39.2%, and more than 50% reduction of heat and smoke release. Furthermore, the π-π stacking interactions within biphenyl structures resulted in a significant enhancement of mechanical strength by as more as 37.7%, and also played a positive role in achieving a lower dielectric constant. Significantly, the copolymer exhibited outstanding closed-loop chemical recyclability, allowing for facile depolymerization into bisphenol monomers and the repolymerized copolymer retains its high heat and fire resistance. This work provides a novel insight in the design of high-performance and closed-loop chemical recyclable polymeric materials.

4.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35653708

RESUMEN

Oxidative stress is known to be involved in and possibly a key driver of the development of numerous chronic diseases, including cancer. It is highly desired to have a capability to reliably estimate the level of intracellular oxidative stress as it can help to identify functional changes and disease phenotypes associated with such a stress, but the problem proves to be very challenging. We present a novel computational model for quantitatively estimating the level of oxidative stress in tissues and cells based on their transcriptomic data. The model consists of (i) three sets of marker genes found to be associated with the production of oxidizing molecules, the activated antioxidation programs and the intracellular stress attributed to oxidation, respectively; (ii) three polynomial functions defined over the expression levels of the three gene sets are developed aimed to capture the total oxidizing power, the activated antioxidation capacity and the oxidative stress level, respectively, with their detailed parameters estimated by solving an optimization problem and (iii) the optimization problem is so formulated to capture the relevant known insights such as the oxidative stress level generally goes up from normal to chronic diseases and then to cancer tissues. Systematic assessments on independent datasets indicate that the trained predictor is highly reliable and numerous insights are made based on its application results to samples in the TCGA, GTEx and GEO databases.


Asunto(s)
Neoplasias , Estrés Oxidativo , Algoritmos , Humanos , Neoplasias/genética , Oxidación-Reducción
5.
Plant Physiol ; 192(3): 1671-1683, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823689

RESUMEN

Excessive softening during fleshy fruit ripening leads to physical damage and infection that reduce quality and cause massive supply chain losses. Changes in cell wall (CW) metabolism, involving loosening and disassembly of the constituent macromolecules, are the main cause of softening. Several genes encoding CW metabolizing enzymes have been targeted for genetic modification to attenuate softening. At least 9 genes encoding CW-modifying proteins have increased expression during ripening. Any alteration of these genes could modify CW structure and properties and contribute to softening, but evidence for their relative importance is sparse. The results of studies with transgenic tomato (Solanum lycopersicum), the model for fleshy fruit ripening, investigations with strawberry (Fragaria spp.) and apple (Malus domestica), and results from naturally occurring textural mutants provide direct evidence of gene function and the contribution of CW biochemical modifications to fruit softening. Here we review the revised CW structure model and biochemical and structural changes in CW components during fruit softening and then focus on and integrate the results of changes in CW characteristics derived from studies on transgenic fruits and mutants. Potential strategies and future research directions to understand and control the rate of fruit softening are also discussed.


Asunto(s)
Frutas , Malus , Frutas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/genética , Malus/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Chemistry ; 30(25): e202401026, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38607283

RESUMEN

Invited for the cover of this issue is the group of Long Pan and co-workers at Asymchem Life Sciences (Tianjin) Co. Ltd. The image depicts a novel continuous process for the synthesis of a macrocyclic poly(ethylene glycol) (PEG) sulfite, the precursor to PEG macrocyclic sulfate, a useful building block in PEG chemistry. Read the full text of the article at 10.1002/chem.202304319.

7.
Chemistry ; 30(25): e202304319, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38277192

RESUMEN

Many macrocyclic compounds are attractive drug-like molecules or intermediates due to their special properties. However, the bulk synthesis of such compounds are hindered by the necessity of using diluted solutions, in order to prevent intermolecular reactions that yields oligomer impurities, thereby resulting in a low production efficiency. Such challenge can be adequately addressed by using continuous reactors, allowing improved efficiency with smaller space footprints. In this work, we proposed a novel continuous process for the synthesis of a macrocyclic sulfite of tetraethylene glycol (PEG4-MCSi), which is a precursor to a very useful building block, PEG4-macrocyclic sulfate (PEG4-MCS). The basic reaction parameters, including stoichiometry and temperature, were first confirmed with small batch reactions, and the effectiveness of coiled reactors and continuous stirred tank reactors (CSTRs) were compared. Cascaded CSTRs were proven to be suitable, and the reaction parameters were subject to further optimization to give a robust continuous process. The process was then tested with 4 parallel runs for up to 64 h. Finally, the merits and demerits of batch and continuous reactions were also compared, demonstrating the suitability of latter in the bulk production of macrocyclic PEG-MCSi compounds.

8.
BMC Cancer ; 24(1): 531, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671390

RESUMEN

OBJECTIVE: In the pathogenesis of myeloproliferative neoplasms (MPN), inflammation plays an important role. However, it is unclear whether there is a causal link between inflammation and MPNs. We used a bidirectional, two-sample Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory cytokines and myeloproliferative neoplasms. METHODS: A genome-wide association study (GWAS) of 8293 European participants identified genetic instrumental variables for circulating cytokines and growth factors. Summary statistics of MPN were obtained from a GWAS including 1086 cases and 407,155 controls of European ancestry. The inverse-variance-weighted method was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl). RESULTS: Our results showed that higher Interleukin-2 receptor, alpha subunit (IL-2rα) levels, and higher Interferon gamma-induced protein 10 (IP-10) levels were associated with an increased risk of MPN (OR = 1.36,95%CI = 1.03-1.81, P = 0.032; OR = 1.55,95%CI = 1.09-2.22, P = 0.015; respectively).In addition, Genetically predicted MPN promotes expression of the inflammatory cytokines interleukin-10 (IL-10) (BETA = 0.033, 95% CI = 0.003 ~ 0.064, P = 0.032) and monokine induced by interferon-gamma (MIG) (BETA = 0.052, 95% CI = 0.002-0.102, P = 0.043) and, on activation, normal T cells express and secrete RANTES (BETA = 0.055, 95% CI = 0.0090.1, P = 0.018). CONCLUSION: Our findings suggest that cytokines are essential to the pathophysiology of MPN. More research is required if these biomarkers can be used to prevent and treat MPN.


Asunto(s)
Citocinas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos Mieloproliferativos , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/sangre , Citocinas/sangre , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Masculino , Predisposición Genética a la Enfermedad , Femenino , Estudios de Casos y Controles , Inflamación/genética , Inflamación/sangre
9.
J Nutr ; 154(7): 2315-2325, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763264

RESUMEN

BACKGROUND: Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES: This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS: White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS: Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1ß), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS: Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.


Asunto(s)
Pollos , Dieta , Selenio , Animales , Selenio/administración & dosificación , Selenio/deficiencia , Selenio/farmacología , Femenino , Dieta/veterinaria , Alimentación Animal/análisis , Enfermedades de las Aves de Corral , Inflamación/metabolismo , Miocardio/metabolismo , Miocardio/patología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Corazón/efectos de los fármacos , Suplementos Dietéticos , Selenoproteínas/metabolismo , Selenoproteínas/genética , Cardiopatías/metabolismo , Cardiopatías/etiología , Antioxidantes/metabolismo
10.
Mol Cell Biochem ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383916

RESUMEN

Ferroptosis of vascular smooth muscle cells (VSMCs) is related to the incidence of aortic dissection (AD). Long non-coding RNA (lncRNA) NORAD plays a crucial role in the progression of various diseases. The present study aimed to investigate the effects of NORAD on the ferroptosis of VSMCs and the molecular mechanisms. The expression of NORAD, HUR, and GPX4 was detected using quantitative real-time PCR (qPCR) or western blot. Ferroptosis was evaluated by detecting lactate dehydrogenase (LDH) activity, lipid reactive oxygen species (ROS), malonaldehyde (MDA) content, L-Glutathione (GSH) level, Fe2+ content, and ferroptosis-related protein levels. The molecular mechanism was assessed using RNA pull-down, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assay. The histology of aortic tissues was assessed using H&E, elastic Verhoeff-Van Gieson (EVG), and Masson staining assays. The data indicated that NORAD was downregulated in patients with AD and AngII-treated VSMCs. Overexpression of NORAD promoted VSMC growth and inhibited the ferroptosis induced by AngII. Mechanistically, NORAD interacted with HUR, which promoted GPX4 mRNA stability and elevated GPX4 levels. Knockdown of GPX4 abrogated the effects of NORAD on cell growth and ferroptosis of AngII-treated VSMCs. Moreover, METTL3 promoted m6A methylation of NORAD in an YTHDF2-dependent manner. In addition, NORAD attenuated AAD symptoms, incidence, histopathology, inflammation, and ferroptosis in AAD mice. In conclusion, METTL3-mediated NORAD inhibited ferroptosis of VSMCs via the HUR/GPX4 axis and decelerated AAD progression, suggesting that NORAD may be an AD therapeutic target.

11.
Anticancer Drugs ; 35(1): 101-108, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615532

RESUMEN

An antibody-drug conjugate (ADC) of human epidermal growth factor receptor-2 (HER2) provides effective treatment for patients with HER2-positive non-small cell lung cancer (NSCLC). Exon 20 insertion mutations are the most common among HER2 mutations. This mutant subtype is highly drug-resistant, and patients receiving conventional treatment often have a poor prognosis. Trastuzumab deruxtecan (T-DXd), a novel anti-HER2 ADC, has emerged as a novel treatment option for HER2-positive (mutated, expressed, amplified, alternated) NSCLC, based on several studies and reported results. Herein, we report a case of stage IV NSCLC with HER2 exon 20 mutation in a 52-year-old male patient whose tumor recurred after radical resection of pulmonary carcinoma, who could not tolerate chemotherapy, and presented with bone metastasis. After treatment with T-DXd, the tumor significantly regressed and bone metastasis improved, maintaining a state of no progression for 21 months. This case report evidences the use of T-DXd in the treatment of NSCLC with HER2 exon 20 insertion mutation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoconjugados , Neoplasias Pulmonares , Masculino , Humanos , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Mutagénesis Insercional , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Trastuzumab/uso terapéutico , Camptotecina , Receptor ErbB-2/genética , Exones
12.
Anticancer Drugs ; 35(3): 292-297, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179893

RESUMEN

Although patients with ALK-positive non-small cell lung cancer (NSCLC) are initially effective on treatment with ALK tyrosine kinase inhibitors (TKIs), resistance will inevitably develop. Of these patients, 2/3 will develop ALK-independent resistance and little is known about the mechanisms of ALK-independent resistance. In pre-clinical studies, the activation of several bypass signaling pathways has been implicated in the development of resistance, including the MET, EGFR, SRC and IGF1R pathways. Among these, the MET pathway is one of the signaling pathways that has recently been extensively studied, and activation of this pathway is one of the mechanisms of ALK-independent drug resistance. Here, we report a successful case of an advanced NSCLC patient who was resistant to treatment with ALK TKIs and developed MET amplification, who achieved 23 months of progression-free survival after post-line treatment with ensartinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Piperazinas , Piridazinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Quinasa de Linfoma Anaplásico/genética , Receptores ErbB/genética , Resistencia a Antineoplásicos , Mutación
13.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755605

RESUMEN

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Receptores CCR2/genética , Linfocitos T CD8-positivos/inmunología , Antígenos CD28/genética
14.
Ecotoxicol Environ Saf ; 272: 116068, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330871

RESUMEN

The inflammatory response induced by fine particulate matter (PM2.5), a common class of air pollutants, is an important trigger for the development of pulmonary fibrosis. However, the specific mechanisms responsible for this phenomenon are yet to be fully understood. To investigate the mechanisms behind the onset and progression of lung fibrosis owing to PM2.5 exposure, both rats and human bronchial epithelial cells were subjected to varying concentrations of PM2.5. The involvement of the PPARG/HMGB1/NLRP3 signaling pathway in developing lung fibrosis caused by PM2.5 was validated through the utilization of a PPARG agonist (rosiglitazone), a PPARG inhibitor (GW9662), and an HMGB1 inhibitor (glycyrrhizin). These outcomes highlighted the downregulation of PPARG expression and activation of the HMGB1/NLRP3 signaling pathway triggered by PM2.5, thereby eliciting inflammatory responses and promoting pulmonary fibrosis. Additionally, PM2.5 exposure-induced DNA hypermethylation of PPARG-encoding gene promoter downregulated PPARG expression. Moreover, the DNA methyltransferase inhibitor 5-azacytidine mitigated the hypermethylation of the PPARG-encoding gene promoter triggered by PM2.5. In conclusion, the HMGB1/NLRP3 signaling pathway was activated in pulmonary fibrosis triggered by PM2.5 through the hypermethylation of the PPARG-encoding gene promoter.


Asunto(s)
Proteína HMGB1 , Fibrosis Pulmonar , Ratas , Humanos , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Material Particulado/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , PPAR gamma , Proteína HMGB1/genética , ADN
15.
Environ Toxicol ; 39(4): 1989-2005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38088504

RESUMEN

Hyperthermia, as an adjuvant therapy, has shown promising anti-tumor effects. Ovarian tumor domain-containing 7B (OTUD7B) is a deubiquitinating enzyme that is frequently found in a variety of cancers. The aim of this study is to investigate the role of OTUD7B in lung cancer hyperthermia and the underlying mechanism. A549 and CALU-3 cells were respectively exposed to 42 or 44°C for the indicated times (0, 1, 3, or 6 h) followed by incubation at 37°C for 24 h. We found a temperature- and time-dependent decrease in cell viability and an increase in apoptosis levels. Compared with 0 h, heat treatment for 3 h inhibited the proliferation and invasion of A549 cells, reduced the expression levels of mitochondrial membrane potential, IAP family members (cIAP-1 and XIAP) proteins and ubiquitination of Smac, and increased Smac protein expression. Treatment with 10 µM Smac mimic BV6 further enhanced the anti-tumor effect of hyperthermia. Next, co-IP validation showed that OTUD7B interacted with Smac and stabilized Smac through deubiquitination. OTUD7B overexpression induced damage in A549 and CALU-3 cells, while silencing OTUD7B caused opposite effects. Overexpressing OTUD7B enhanced the anti-cancer effect of hyperthermia, while si-OTUD7B reversed the anti-cancer effect of hyperthermia, which was verified in the xenograft tumor model in nude mice. Taken together, OTUD7B may serve as a potential anticancer factor with potential clinical efficacy in the thermotherapeutic treatment of lung cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias Pulmonares , Enfermedades Mitocondriales , Animales , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Enzimas Desubicuitinizantes , Péptidos y Proteínas de Señalización Intracelular , Ratones Desnudos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/farmacología
16.
Environ Toxicol ; 39(3): 1415-1428, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987454

RESUMEN

Epidemiologic surveys have indicated that cigarette smoking is an important risk factor for diabetes, but its mechanisms remain unclear. Andrographolide, an herb traditionally utilized in medicine, provides anti-inflammatory benefits for various diseases. In the present work, 265 patients with Type 2 diabetes (T2D) were investigated, and male C57BL/6 mice were exposed to cigareete smoke (CS) and/or to intraperitoneally injected andrographolide for 3 months. To elucidate the mechanism of CS-induced hyperglycemia and the protective mechanism of andrographolide, MIN6 cells were exposed to cigarette smoke extract (CSE) and/or to andrographolide. Our data from 265 patients with T2D showed that urinary creatinine and serum inflammatory cytokines (interleukin 6 (IL-6), IL-8, IL-1ß, and tumor necrosis factor α (TNF-α)) increased with smoking pack-years. In a mouse model, CS induced hyperglycemia, decreased insulin secretion, and elevated inflammation and pyroptosis in ß-cells of mice. Treatment of mice with andrographolide preserved pancreatic function by reducing the expression of inflammatory cytokines; the expression of TXNIP, NLRP3, cleaved caspase 1, IL-1ß; and the N-terminal of gasdermin D (GSDMD) protein. For MIN6 cells, CSE caused increasing secretion of the inflammatory cytokines IL-6 and IL-1ß, and the expression of TXNIP and pyroptosis-related proteins; however, andrographolide alleviated these changes. Furthermore, silencing of TXNIP showed that the blocking effect of andrographolide may be mediated by TXNIP. In sum, our results indicate that CS induces hyperglycemia through TXNIP-NLRP3-GSDMD axis-mediated inflammation and pyroptosis of islet ß-cells and that andrographolide is a potential therapeutic agent for CS-induced hyperglycemia.


Asunto(s)
Fumar Cigarrillos , Diabetes Mellitus Tipo 2 , Diterpenos , Hiperglucemia , Proteínas de Unión a Fosfato , Humanos , Masculino , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Inflamación/metabolismo , Citocinas/metabolismo , Proteínas Portadoras , Gasderminas , Productos de Tabaco
17.
Anal Chem ; 95(4): 2523-2531, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36657481

RESUMEN

Exosomes are recognized as noteworthy biomarkers playing unprecedented roles in intercellular communication and disease diagnosis and treatment. It is a prerequisite to obtain high-purity exosomes for the comprehension of exosome biochemistry and further illustration of their functionality/mechanisms. However, the isolation of nanoscale exosomes from endogenous proteins is particularly challenging for small-volume biological samples. Herein, a Dean-flow-coupled elasto-inertial microfluidic chip (DEIC) was developed. It consists of a spiral microchannel with dimensional confined concave structures and facilitates elasto-inertial separation of exosomes with lower protein contaminants from cell culture medium and human serum. The presence of 0.15% (w/v) poly-(oxyethylene) controls the elastic lift force acting on suspended nanoscale particles and makes it feasible for field-free purification of integrity exosomes with a 70.6% recovery and a 91.4% removal rate for proteins. As a proof of concept, the technique demonstrated the individual-vesicle-level biomarker (EpCAM and PD-L1) profiling in combination with simultaneous aptamer-mediated analysis to disclose the sensibility for immune response. Overall, DEIC enables the collection of high-purity exosomes and exhibits potential in integration with downstream analyses of exosomes.


Asunto(s)
Exosomas , Humanos , Exosomas/química , Microfluídica/métodos , Técnicas de Cultivo de Célula , Proteínas/análisis
18.
Plant Physiol ; 188(1): 318-331, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34618124

RESUMEN

Petals of the monocot Phalaenopsis aphrodite (Orchidaceae) possess conical epidermal cells on their adaxial surfaces, and a large amount of cuticular wax is deposited on them to serve as a primary barrier against biotic and abiotic stresses. It has been widely reported that subgroup 9A members of the R2R3-MYB gene family, MIXTA and MIXTA-like in eudicots, act to regulate the differentiation of conical epidermal cells. However, the molecular pathways underlying conical epidermal cell development and cuticular wax biosynthesis in monocot petals remain unclear. Here, we characterized two subgroup 9A R2R3-MYB genes, PaMYB9A1 and PaMYB9A2 (PaMYB9A1/2), from P. aphrodite through the transient overexpression of their coding sequences and corresponding chimeric repressors in developing petals. We showed that PaMYB9A1/2 function to coordinate conical epidermal cell development and cuticular wax biosynthesis. In addition, we identified putative targets of PaMYB9A1/2 through comparative transcriptome analyses, revealing that PaMYB9A1/2 acts to regulate the expression of cell wall-associated and wax biosynthetic genes. Furthermore, a chemical composition analysis of cuticular wax showed that even-chain n-alkanes and odd-chain primary alcohols are the main chemical constituents of cuticular wax deposited on petals, which is inconsistent with the well-known biosynthetic pathways of cuticular wax, implying a distinct biosynthetic pathway occurring in P. aphrodite flowers. These results reveal that the function of subgroup 9A R2R3-MYB family genes in regulating the differentiation of epidermal cells is largely conserved in monocots and dicots. Furthermore, both PaMYB9A1/2 have evolved additional functions controlling the biosynthesis of cuticular wax.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Orchidaceae/crecimiento & desarrollo , Orchidaceae/genética , Orchidaceae/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Ceras/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Morfogénesis/genética , Plantas Modificadas Genéticamente
19.
Opt Lett ; 48(13): 3551-3554, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390178

RESUMEN

The linear constraint of secret key rate capacity is overcome by the twin-field quantum key distribution (QKD). However, the complex phase-locking and phase-tracking technique requirements throttle the real-life applications of the twin-field protocol. The asynchronous measurement-device-independent (AMDI) QKD, also called the mode-pairing QKD, protocol can relax the technical requirements and keep the similar performance of the twin-field protocol. Here, we propose an AMDI-QKD protocol with a nonclassical light source by changing the phase-randomized weak coherent state to a phase-randomized coherent-state superposition in the signal state time window. Simulation results show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol, while exhibiting robustness to imperfect modulation of nonclassical light sources.

20.
Vascular ; 31(4): 791-798, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35422197

RESUMEN

OBJECTIVES: Inadvertent arterial catheterization can occur during transjugular central venous catheter insertion and should be promptly treated to prevent serious consequences. Although many treatment modalities are available, no exist guidelines regarding the selection of treatment. We aimed to describe our experience with the treatment of 11 patients who underwent inadvertent cervical arterial catheterization and propose an algorithm for the selection of treatment methods. METHODS: We retrospectively identified all patients who were treated for inadvertent arterial catheterization at our center between January 2016 and March 2021. We reviewed patient profiles, images, treatment methods, and follow-up data. RESULTS: Eleven patients were included (eight men and three women, age: 36-73 years). Ten catheter misplacements were in the right common carotid artery. The remaining catheter was inserted into the right subclavian artery after penetrating the right common carotid artery. Two catheters were 5-Fr and nine catheters were 11.5-Fr. Two patients underwent manual compressions, three underwent open surgery, three underwent stent-graft repairs, and four underwent Perclose Proglide closure. Clinical success was achieved in all 11 patients. Primary technical success was achieved in 10 patients. In one patient, unsuccessful manual compression was followed by successful stent-graft repair; the manual compression failed to prevent bleeding, possibly because of the long-term oral administration of aspirin for coronary heart disease. The mean follow-up was 5.4 months (range, 1-12 months). The overall mortality rate was zero, and no vascular or neurological events occurred. CONCLUSIONS: The existing data show that the current protocol for the treatment of inadvertent cervical arterial catheterization at our center is safe and effective. However, the data are insufficient and require further clinical validation.


Asunto(s)
Cateterismo Venoso Central , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Resultado del Tratamiento , Cateterismo Venoso Central/efectos adversos , Arteria Subclavia/diagnóstico por imagen , Arteria Subclavia/cirugía , Hemorragia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA