RESUMEN
Mowing for hay is an important land use in grasslands that is affected by precipitation variability, due to the water-limited nature of these ecosystems. Past land use and precipitation conditions can have legacy effects on ecosystem functions, potentially altering responses to both mowing and precipitation. Nonetheless, it is still unclear how natural variation in precipitation will affect plant responses to changes in mowing intensity. We conducted a seven-year field experiment with three mowing intensity treatments compared to the traditional mowing intensity (5 cm stubble height) as a control: increased mowing (2 cm stubble), decreased mowing (8 cm stubble) and ceased mowing. Decreased mowing increased both plant aboveground net primary productivity [ANPP] and forage yield across the whole community, driven by increases in graminoids, mainly owing to the positive response of plants to precipitation. Both mowing disturbance and precipitation variability had legacy effects on plant ANPP; however, these responses differed among the whole community, graminoid, and forb levels. Current-year community-wide ANPP [ANPPn] was positively associated with current-year precipitation [PPTn] in all mowing treatments, driven by positive precipitation responses of the dominant graminoids. For forbs, however, ANPPn was negatively associated with prior-year growing season precipitation [PPTn-1] across mowing treatments, potentially due to lagged competition with the dominant graminoids. Our results suggest that the response of the dominant graminoids is the primary factor determining the response of ANPP to mowing and precipitation variability in these grassland ecosystems, and highlight that decreasing mowing intensity may maximize both herder's income and grassland sustainability.
Asunto(s)
Ecosistema , Pradera , Poaceae/fisiología , Lluvia , PlantasRESUMEN
The effects of grazing on the cycling of carbon (C), nitrogen (N) and phosphorus (P) in grassland ecosystems are complex. Uncertainty still exists as regards the allocation of C, N and P storage amounts in grazed ecosystems in Inner Mongolia, situated at the eastern end of the Eurasian dryland. Based on the long-term cattle grazing experimental platform in the Hulun Buir meadow steppe of Inner Mongolia, a 3-year (2019-2021) field control experiment was conducted to assess how the grazing intensity influenced the quantities of C, N and P stored in canopy biomass, root, litter and soil compartments. We examined the relationships between the different pools and their regulatory pathways at the ecosystem level across six grazing intensities. In general, grazing increased the aboveground N and P contents but decreased the aboveground biomass C content and nutrient storage amounts in aboveground biomass, roots and litter. The grazing intensity of 0.34 AU ha-1 increased soil organic carbon, total nitrogen and total phosphorus storage amounts, with the soil accounting for 98 % of total reserves on average. Grazing affected soil pHï¼ nutrient contents, above- and belowground biomass and soil environmental factors such as soil bulk density, which in turn affected C, N and P storage in the ecosystem according to the results of the structural equation model; therefore, grazing intensity can be an important factor regulating the input and output of nutrients in the ecosystem. In the future, for adaptive management of grasslands, moderate grazing could effectively increase C, N and P storage in meadow steppe ecosystems and ensure the nutrient balance and long-term sustainable development.
Asunto(s)
Ecosistema , Pradera , Animales , Bovinos , Carbono/análisis , Fósforo , Suelo/química , Nitrógeno/análisis , Plantas , Biomasa , ChinaRESUMEN
Maize residue retention is an effective agricultural practice for improving soil fertility in black soil region, where suffered from long freezing-thawing periods and intense freeze-thawing (FT) cycles. However, very few studies have examined the influence of maize residue retention on soil microbial communities under FT cycles. We investigated the response of soil microbial communities and co-occurrence networks to maize residue retention at different FT intensities over 12 cycles using a microcosm experiment conditioned in a temperature incubator. Our results indicated that maize residue retention induced dramatic shifts in soil archaeal, bacterial and fungal communities towards copiotroph-dominated communities. Maize residue retention consistently reduced soil fungal richness across all cycles, but this effect was weaker for archaea and bacteria. Normalized stochastic ratio analysis revealed that maize residue retention significantly enhanced the deterministic process of archaeal, bacterial and fungal communities. Although FT intensity significantly impacted soil respiration, it did not induce profound changes in soil microbial diversity and community composition. Co-occurrence network analysis revealed that maize residue retention simplified prokaryotic network, while did not impact fungal network complexity. The network robustness index suggested that maize residue retention enhanced the fungal network stability, but reduced prokaryotic network stability. Moreover, the fungal network in severe FT treatment harbored the most abundant keystone taxa, mainly being cold-adapted fungi. By identifying modules in networks, we observed that prokaryotic Module #1 and fungal Module #3 were enhanced by maize residue retention and contributed greatly to soil quality. Together, our results showed that maize residue retention exerted stronger influence on soil microbial communities and co-occurrence network patterns than FT intensity and highlighted the potential of microbial interactions in improving soil functionality.
Asunto(s)
Bacterias , Congelación , Hongos , Microbiología del Suelo , Zea mays , Zea mays/microbiología , Bacterias/clasificación , Bacterias/genética , Microbiota , Archaea , Suelo/químicaRESUMEN
Wind erosion can cause desertification and sandstorms in arid and semiarid areas. However, quantitative studies of the dynamic changes in wind erosion over long time periods are relatively rare, and this knowledge gap hinders our understanding of desertification under the conditions of a changing climate. Here, we selected the Mongolian Plateau as the study area. Using the revised wind erosion equation (RWEQ) model, we assessed the spatial and temporal dynamics of wind erosion on the Mongolian Plateau from 1982 to 2018. Our results showed that the wind erosion intensity on the Mongolian Plateau increased from northeast to southwest. The annual mean wind erosion modulus was 46.5 t·ha-1 in 1982-2008, with a significant decline at a rate of -5.1 t·ha-1·10 yr-1. The intensity of wind erosion was the strongest in spring, followed by autumn and summer, and was weakest in winter. During 1982-2018, wind erosion showed a significant decreasing trend in all seasons except winter. The wind erosion contribution of spring to the total annual wind erosion significantly increased, while that of summer significantly decreased. These results can help decision-makers identify high-risk areas of soil erosion on the Mongolian Plateau and take effective measures to adapt to climate change.
Asunto(s)
Suelo , Viento , Cambio Climático , Estaciones del Año , Conservación de los Recursos Naturales , ChinaRESUMEN
Underutilized grain crops are an essential part of the food system that supports humankind. A number of these crops can be found in China, such as barley, buckwheat, broomcorn millet, foxtail millet, oat, and sorghum, which have characteristics such as containing more nutritional elements, being resistant to biotic and abiotic stresses, and having strong adaptability to poor environments. The diversity of these crops provides options for farmers' livelihoods and healthy food for the population. Although some mentioned crops such as barley, oat, and sorghum are not underutilized crops globally, they could be considered underutilized in China as they were more important in the past and could be revitalized for food and nutrition in the future. This paper reviews current progress in research and development in the areas of germplasm resource conservation, variety improvement, cultivation technologies, processing, and the nutrition and benefits of six underutilized grain crops in China. It is concluded that underutilized grain crops could play a critical role in food and nutritional security in China.
RESUMEN
Whether species coculture can overcome the shortcomings of crop monoculture requires additional study. Here, we show how aquatic animals (i.e. carp, crabs, and softshell turtles) benefit paddy ecosystems when cocultured with rice. Three separate field experiments and three separate mesocosm experiments were conducted. Each experiment included a rice monoculture (RM) treatment and a rice-aquatic animal (RA) coculture treatment; RA included feed addition for aquatic animals. In the field experiments, rice yield was higher with RA than with RM, and RA also produced aquatic animal yields that averaged 0.52-2.57 t ha-1. Compared to their corresponding RMs, the three RAs had significantly higher apparent nitrogen (N)-use efficiency and lower weed infestation, while soil N contents were stable over time. Dietary reconstruction analysis based on 13C and 15N showed that 16.0-50.2% of aquatic animal foods were from naturally occurring organisms in the rice fields. Stable-isotope-labeling (13C) in the field experiments indicated that the organic matter decomposition rate was greater with RA than with RM. Isotope 15N labeling in the mesocosm experiments indicated that rice used 13.0-35.1% of the aquatic animal feed-N. All these results suggest that rice-aquatic animal coculture increases food production, increases N-use efficiency, and maintains soil N content by reducing weeds and promoting decomposition and complementary N use. Our study supports the view that adding species to monocultures may enhance agroecosystem functions.
Monoculture, where only one type of crop is grown to the exclusion of any other organism, is a pillar of modern agriculture. Yet this narrow focus disregards how complex inter-species interactions can increase crop yield and biodiversity while decreasing the need for fertilizers or pesticides. For example, many farmers across Asia introduce carps, crabs, turtles or other freshwater grazers into their rice paddies. This coculture approach yields promising results but remains poorly understood. In particular, it is unclear how these animals' behaviours and biological processes benefit the ecosystem. To examine these questions, Guo, Zhao et al. conducted three separate four-year field experiments; they compared rice plots inhabited by either carp, mitten crabs or Chinese softshell turtles with fields where these organisms were not present. With animals, the rice paddies had less weeds, better crop yields and steady levels of nitrogen (a natural fertiliser) in their soil. These ecosystems could breakdown organic matter faster, use it better and had a reduced need for added fertilizer. While animal feed was provided in the areas that were studied, carp, crabs and turtles obtained up to half their food from the field itself, eating weeds, algae and pests and therefore reducing competition for the crops. This work helps to understand the importance of species interactions, showing that diversifying monocultures may boost yields and make agriculture more sustainable.
Asunto(s)
Agricultura , Braquiuros/fisiología , Carpas/fisiología , Ecosistema , Oryza , Tortugas/fisiología , Animales , Nitrógeno/química , Nitrógeno/metabolismo , Suelo/químicaRESUMEN
Passive restoration (without any intervention) has been proposed as an effective strategy for grassland restoration in abandoned croplands. However, whether the vegetation in abandoned croplands can change towards the desired state and the time needed to reach a relative stable state are context-dependent. We investigated three abandoned croplands with different recovery times (5, 15 and 20 years) and one natural grassland in each of two different types of steppe (desert steppe and typical steppe) in the agro-pastoral ecotone of northern China to assess the restoration potential of grassland on abandoned croplands. Above- and below-ground biomass as well as species biodiversity increased gradually with increasing recovery time. After 20 years of restoration there was no significant difference between abandoned cropland and natural steppe in the typical steppe site, but above- and below-ground biomass and species biodiversity were still lower in abandoned cropland in the desert steppe site. At the beginning of restoration, the communities were dominated mainly by annual species, especially in the desert steppe. As recovery time increased, the biomass and richness of perennial graminoids and forbs increased significantly and replaced annual species as the dominant species. In both desert steppe and typical steppes, species similarity between restored and natural steppe increased over time, suggesting that previously cultivated grassland recovered towards the desired state. Our results indicate that 20 years was sufficient time for the restoration of croplands in the typical steppe, but more time may be needed in the desert steppe.