Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674780

RESUMEN

Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Respuesta al Choque por Frío/genética , Poaceae/genética , Poaceae/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Frío
2.
BMC Microbiol ; 22(1): 83, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354370

RESUMEN

BACKGROUND: This study aimed to investigate the effect of phenyllactic acid as an additive on silage fermentation and bacterial community of reed canary grass (RCG, Phalaris arundinacea L.) on the Qinghai Tibetan Plateau. At the heading stage, RCG was harvested, chopped and ensiled in small bag silos. The silage was treated without (control, 1.0 g/mL sterile water, on a fresh matter basis (FM)) or with phenyllactic acid (PLA, 3 mg/mL, FM), antimicrobial additive (PSB, a mixture of potassium sorbate and sodium benzoate, 2%, FM), lactic acid bacteria inoculant (LABi, L. plantarum + L. curvatus, 1 × 106 cfu/g, FM) and PLA + LABi, and then stored in a dark room at the ambient temperature (5 ~ 15 °C) for 60 days. RESULTS: Compared with control, PLA decreased lactic acid, acetic acid and ammonia-N contents, and subsequently increased CP content of RCG silage. PLA enhanced the growth of lactic acid bacteria and reduced the count of yeasts (P < 0.05) in RCG silage, with reduced bacterial richness index (Chao1), observed operational taxonomic units and diversity index (Simpson). In relative to control, moreover, PLA and PLA + LABi increased the relative abundance of Lactococcus in RCG silage by 27.73 and 16.93%, respectively. CONCLUSIONS: Therefore, phenyllactic acid at ensiling improved nutritional quality of RCG silage by advancing the disappearance of yeasts and the dominance of Lactococcus.


Asunto(s)
Phalaris , Ensilaje , Fermentación , Lactatos , Ensilaje/microbiología , Tibet
3.
New Phytol ; 235(2): 563-575, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35383390

RESUMEN

Strigolactones (SLs) play a critical role in regulating plant tiller number. LATERAL BRANCHING OXIDOREDUCTASE (LBO) encodes an important late-acting enzyme for SL biosynthesis and regulates shoot branching in Arabidopsis. However, little is known about the function of LBO in monocots including switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. We studied the function of PvLBO via the genetic manipulation of its expression levels in both the wild-type and miR156 overexpressing (miR156OE ) switchgrass. Co-expression analysis, quantitative real-time polymerase chain reaction (qRT-PCR), transient dual luciferase assay, and chromatin immunoprecipitation-qPCR were all used to determine the activation of PvLBO by miR156-targeted Squamosa Promoter Binding Protein-like 2 (PvSPL2) in regulating tillering of switchgrass. PvLBOtranscripts dramatically declined in miR156OE transgenic switchgrass, and the overexpression of PvLBO in the miR156OE transgenic line produce fewer tillers than the control. Furthermore, we found that PvSPL2 can directly bind to the promoter of PvLBO and activate its transcription, suggesting that PvLBO is a novel downstream gene of PvSPL2. We propose that PvLBO functions as an SL biosynthetic gene to mediate tillering and acts as an important downstream factor in the crosstalk between the SL biosynthetic pathway and the miR156-SPL module in switchgrass.


Asunto(s)
Arabidopsis , MicroARNs , Panicum , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oxidorreductasas/metabolismo , Panicum/metabolismo , Plantas Modificadas Genéticamente/metabolismo
4.
J Exp Bot ; 73(12): 4157-4169, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35383829

RESUMEN

S-adenosyl- l-methionine (SAM) is the methyl donor involved in the biosynthesis of guaiacyl (G) and syringyl (S) lignins in vascular plants. SAM is synthesized from methionine through the catalysis of the enzyme S-adenosylmethionine synthase (SAMS). However, the detailed function of SAMS in lignin biosynthesis has not been widely investigated in plants, particularly in monocot species. In this study, we identified PvSAMS genes from switchgrass (Panicum virgatum L.), an important dual-purpose fodder and biofuel crop, and generated numerous transgenic switchgrass lines through PvSAMS RNA interference technology. Down-regulation of PvSAMS reduced the contents of SAM, G-lignins, and S-lignins in the transgenic switchgrass. The methionine and glucoside derivatives of caffeoyl alcohol were found to accumulate in the transgenic plants. Moreover, down-regulation of PvSAMS in switchgrass resulted in brownish stems associated with reduced lignin content and improved cell wall digestibility. Furthermore, transcriptomic analysis revealed that most sulfur deficiency-responsive genes were differentially expressed in the transgenic switchgrass, leading to a significant increase in total sulfur content; thus implying an important role of SAMS in the methionine cycle, lignin biosynthesis, and sulfur assimilation. Taken together, our results suggest that SAMS is a valuable target in lignin manipulation, and that manipulation of PvSAMS can simultaneously regulate the biosynthesis of SAM and methylated monolignols in switchgrass.


Asunto(s)
Panicum , Pared Celular/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Metionina/metabolismo , Panicum/genética , Panicum/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , S-Adenosilmetionina/metabolismo , Azufre/metabolismo
5.
Mol Breed ; 42(5): 27, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309534

RESUMEN

Switchgrass (Panicum virgatum L.) is an important perennial C4 species due to its large potential for cellulosic bioenergy feedstock production. Identification of quantitative trait loci (QTL) controlling important developmental traits is valuable to understanding the genetic basis and using marker-assisted selection (MAS) in switchgrass breeding. One F1 hybrid population derived from NL94 (♀) × SL93 (♂) and one S1 (first-generation selfed) population from NL94 were used in this study. Both the populations showed significant variations for genotype and genotype by environment interactions for three traits studied: plant vigor, spring green-up, and plant biomass. Plant vigor had strong and positive correlations with plant biomass in both populations. Broad-sense heritability estimates for plant vigor ranged from 0.46 to 0.74 and 0.45 to 0.74 in the hybrid and selfed population, respectively. Spring green-up had similar heritability estimates, 0.42-0.78 in the hybrid population, and 0.47-0.82 in the selfed population. Heritability of plant biomass was 0.54-0.64 in the hybrid population and 0.64-0.74 in the selfed population. Fifteen QTLs for spring green-up, 6 QTLs for plant vigor, and 3 QTLs for biomass yield were detected in the hybrid population, whereas 4 QTLs for spring green-up, 4 QTLs for plant vigor, and 1 QTL for biomass yield were detected in the selfed population. Markers associated with these QTLs can be used in MAS to accelerate switchgrass breeding program. This study provided new information in understanding the genetic control of biomass components and demonstrated substantial heterotic vigor that could be explored for breeding hybrid cultivars in switchgrass. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01296-7.

6.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613896

RESUMEN

Drought is one of the most important factors affecting plant growth and production due to ongoing global climate change. Elymus sibiricus has been widely applied for ecological restoration and reseeding of degraded grassland in the Qinghai-Tibetan Plateau (QTP) because of its strong adaptability to barren, salted, and drought soils. To explore the mechanism of drought resistance in E. sibiricus, drought-tolerant and drought-sensitive genotypes of E. sibiricus were used in metabolomic studies under simulated long-term and short-term drought stress. A total of 1091 metabolites were detected, among which, 27 DMs were considered to be the key metabolites for drought resistance of E. sibiricus in weighted gene co-expression network analysis (WGCNA). Ten metabolites, including 3-amino-2-methylpropanoic acid, coniferin, R-aminobutyrate, and so on, and 12 metabolites, including L-Proline, L-histidine, N-acetylglycine, and so on, showed differential accumulation patterns under short-term and long-term drought stress, respectively, and thus, could be used as biomarkers for drought-tolerant and drought-sensitive E. sibiricus. In addition, different metabolic accumulation patterns and different drought response mechanisms were also found in drought-tolerant and drought-sensitive genotypes of E. sibiricus. Finally, we constructed metabolic pathways and metabolic patterns for the two genotypes. This metabolomic study on the drought stress response of E. sibiricus can provide resources and a reference for the breeding of new drought-tolerant cultivars of E. sibiricus.


Asunto(s)
Elymus , Elymus/genética , Resistencia a la Sequía , Fitomejoramiento , Perfilación de la Expresión Génica , Sequías
7.
BMC Plant Biol ; 21(1): 3, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407133

RESUMEN

BACKGROUND: Siberian wildrye (Elymus sibiricus L.) attracts considerable interest for grassland establishment and pasture recovery in the Qinghai-Tibet Plateau (QTP) due to its excellence in strong stress tolerance, high nutritional value and ease to cultivate. However, the lack of genomic information of E. sibiricus hampers its genetics study and breeding process. RESULTS: In this study, we performed a genome survey and developed a set of SSR markers for E. sibiricus based on Next-generation sequencing (NGS). We generated 469.17 Gb clean sequence which is 58.64× of the 6.86 Gb estimated genome size. We assembled a draft genome of 4.34 Gb which has 73.23% repetitive elements, a heterozygosity ratio of 0.01% and GC content of 45.68%. Based on the gnomic sequences we identified 67,833 SSR loci and from which four hundred were randomly selected to develop markers. Finally, 30 markers exhibited polymorphism between accessions and ten were identified as single-locus SSR. These newly developed markers along with previously reported 30 ones were applied to analyze genetic polymorphism among 27 wild E. sibiricus accessions. We found that single-locus SSRs are superior to multi-loci SSRs in effectiveness. CONCLUSIONS: This study provided insights into further whole genome sequencing of E. sibiricus in strategy selection. The novel developed SSR markers will facilitate genetics study and breeding for Elymus species.


Asunto(s)
ADN de Plantas/genética , Elymus/genética , Etiquetas de Secuencia Expresada , Sitios Genéticos , Genoma de Planta , Genómica , Repeticiones de Microsatélite/genética , Mapeo Cromosómico , Biblioteca de Genes , Marcadores Genéticos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento
8.
BMC Genomics ; 20(1): 861, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31726988

RESUMEN

BACKGROUND: Elymus sibiricus is an ecologically and economically important perennial, self-pollinated, and allotetraploid (StStHH) grass, widely used for forage production and animal husbandry in Western and Northern China. However, it has low seed yield mainly caused by seed shattering, which makes seed production difficult for this species. The goals of this study were to construct the high-density genetic linkage map, and to identify QTLs and candidate genes for seed-yield related traits. RESULTS: An F2 mapping population of 200 individuals was developed from a cross between single genotype from "Y1005" and "ZhN06". Specific-locus amplified fragment sequencing (SLAF-seq) was applied to construct the first genetic linkage map. The final genetic map included 1971 markers on the 14 linkage groups (LGs) and was 1866.35 cM in total. The length of each linkage group varied from 87.67 cM (LG7) to 183.45 cM (LG1), with an average distance of 1.66 cM between adjacent markers. The marker sequences of E. sibiricus were compared to two grass genomes and showed 1556 (79%) markers mapped to wheat, 1380 (70%) to barley. Phenotypic data of eight seed-related traits (2016-2018) were used for QTL identification. A total of 29 QTLs were detected for eight seed-related traits on 14 linkage groups, of which 16 QTLs could be consistently detected for two or three years. A total of 6 QTLs were associated with seed shattering. Based on annotation with wheat and barley genome and transcriptome data of abscission zone in E. sibiricus, we identified 30 candidate genes for seed shattering, of which 15, 7, 6 and 2 genes were involved in plant hormone signal transcription, transcription factor, hydrolase activity and lignin biosynthetic pathway, respectively. CONCLUSION: This study constructed the first high-density genetic linkage map and identified QTLs and candidate genes for seed-related traits in E. sibiricus. Results of this study will not only serve as genome-wide resources for gene/QTL fine mapping, but also provide a genetic framework for anchoring sequence scaffolds on chromosomes in future genome sequence assembly of E. sibiricus.


Asunto(s)
Mapeo Cromosómico , Elymus/genética , Genes de Plantas , Ligamiento Genético , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Semillas/genética , Elymus/clasificación , Marcadores Genéticos , Genoma de Planta , Genómica/métodos , Genotipo , Fenotipo , Filogenia , Análisis de Secuencia de ADN , Tibet
9.
BMC Genomics ; 19(1): 807, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404602

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa) is a widely cultivated, essential commercial forage crop. The protein content in its leaves is the critical factor in determining the quality of alfalfa. Thus far, the understanding of the molecular mechanism of alfalfa defoliation traits remains unclear. The transcriptome database created by RNA-Seq is used to identify critical genes related to defoliation traits. RESULTS: In this study, we sequenced the transcriptomes of the Zhungeer variety (with easy leaf abscission) and WL319HQ variety (without easy leaf abscission). Among the identified 66,734 unigenes, 706 differentially expressed genes (DEGs) upregulated, and 392 unigenes downregulated in the Zhungeer vs WL319HQ leaf. KEGG pathway annotations showed that 8,414 unigenes were annotated to 87 pathways and contained 281 DEGs. Six DEGs belonging to the "Carotenoid biosynthesis", "Plant hormone signal transduction" and "Circadian rhythm-plant" pathways involved in defoliation traits were identified and validated by RT-qPCR analyses. CONCLUSIONS: This study used RNA-Seq to discover genes associated with defoliation traits between two alfalfa varieties. Our transcriptome data dramatically enriches alfalfa functional genomic studies. In addition, these data provide theoretical guidance for field production practice and genetic breeding, as well as references for future study of defoliation traits in alfalfa.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicago sativa/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Medicago sativa/clasificación , Medicago sativa/crecimiento & desarrollo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Transcriptoma
10.
Hereditas ; 153: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28096771

RESUMEN

BACKGROUND: Genetic diversity of 19 forage-type and 2 turf-type cultivars of tall fescue (Festuca arundinacea Schreb.) was revealed using SSR markers in an attempt to explore the genetic relationships among them, and examine potential use of SSR markers to identify cultivars by bulked samples. RESULTS: A total of 227 clear band was scored with 14 SSR primers and out of which 201 (88.6 %) were found polymorphic. The percentage of polymorphic bands (PPB) per primer pair varied from 62.5 to 100 % with an average of 86.9 %. The polymorphism information content (PIC) value ranged from 0.116 to 0.347 with an average of 0.257 and the highest PIC value (0.347) was noticed for primer NFA040 followed by NFA113 (0.346) whereas the highest discriminating power (D) of 1 was shown in NFA037 and LMgSSR02-01C. A Neighbor-joining dendrogram and the principal component analysis identified six major clusters and grouped the cultivars in agreement with their breeding histories. STRUCTURE analysis divided these cultivars into 3 sub-clades which correspond to distance based groupings. CONCLUSION: These findings indicates that SSR markers by bulking strategy are a useful tool to measure genetic diversity among tall fescue cultivars and could be used to supplement morphological data for plant variety protection.


Asunto(s)
Festuca/genética , Repeticiones de Microsatélite , Polimorfismo Genético , ADN de Plantas/genética , Festuca/clasificación , Marcadores Genéticos , Análisis de Secuencia de ADN
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(12): 3382-7, 2015 Dec.
Artículo en Zh | MEDLINE | ID: mdl-26964214

RESUMEN

Near-infrared reflectance spectroscopy (NIRS) is an inexpensive, rapid, environment-friendly and non-invasive analytical technique that has been extensively applied in the analysis of the dietary attributes and the animal products. Acquisition of dietary attributes is essential for nutritional diagnoses to provide animals with reasonable diet. Traditionally, the calibration equations for the prediction of dietary attributes (e. g. crude protein) are developed from feed NIR spectra and the results of conventional chemical analysis (i. e. reference data). It is difficult to obtain the NIR spectra of forages consumed by grazing animals, so the method of this calibration is inappropriate for free-grazing herbivores. Feces, as the animal's metabolites, contain the information about both the animal's diet and the animal itself. Recently, Fecal-NIRS (F. NIRS) has been directly used to monitor diet information (botanical composition, chemical composition and digestibility), based on correlation between reference data and fecal NIR profile. Subsequently, some additional application (such as sex and species discrimination, reproductive and parasite status) of F. NIRS also is outlined. In the last, application of NIRS in animal manure is summarized. NIRS was shown to be an alternative to conventional wet chemical methods for analyzing some nutrient concentrations in animal manure rapidly. Overall, this paper proves that F. NIRS is a rapid and valid tool for the determination of the dietary attributes and of the physiological status of animal, although more efforts need to be done to improve the accuracy of the F. NIRS technique. Several researchers in English have reviewed the applications of F. NIRS. In China, however, there is a paucity of research and application regarding F. NIRS. We expect that this paper in Chinese will be helpful to the development of F. NIRS in China. At the same time, we propose NIRS as a simple and rapid analytical method for predicting the main chemical composition (dry matter, organ matter, total solid, volatile solid, total nitrogen, total Kjeldahl nitrogen and ammonium nitrogen) in animal manure.


Asunto(s)
Heces/química , Espectroscopía Infrarroja Corta , Alimentación Animal , Animales , Calibración , China , Herbivoria , Estiércol , Nitrógeno/análisis
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(8): 2103-7, 2015 Aug.
Artículo en Zh | MEDLINE | ID: mdl-26672275

RESUMEN

Siberian wildrye (Elymus sibiricus L.) is one of the predominant pasture species in Qinghai-Tibet plateau of China. It supplies a large number of fodders to domestic animals in spring and winter, and provides a large proportion of the summer and autumn grazing in these alpine regions. Crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF) and in vitro dry matter digestibility (IVDMD) are the most important aspects of nutritive value of forages. A successful application of near infrared spectroscopy (NIRS) in combination with partial least square regression (PLSR) for the determination of four parameters (CP, ADF, NDF and IVDMD) of Siberian wildrye was developed. The standard errors of calibration (SEC, %DM) and Rcal(2) values (in parentheses) were 0.3299(0.9945), 0.7799(0.9499), 1.3430(0.9133), and 1.3762(0.9822) for CP, ADF, NDF and IVDMD equations, respectively. The standard errors of prediction (SEP, %DM) and Rval(2) values (in parentheses) were 0.3621(0.9938), 0.7878(0.9449), 1.3852(0.8907), and 1.4303(0.9790) for CP, ADF, NDF and IVDMD, respectively. A good correlation (r>0.9438) was found between results from NIRS and the traditional chemical method, and residual predictive deviation (RPD) ranged from 3.02 to 12.63. It was concluded that NIR spectroscopic technique associated with chemometrics is sufficiently sensitive to allow the accurate prediction of the concentrations of compo nents (CP, ADF and NDF) and IVDMD of Siberian wildrye.


Asunto(s)
Alimentación Animal/análisis , Elymus , Valor Nutritivo , China , Fibras de la Dieta/análisis , Análisis de los Mínimos Cuadrados , Proteínas de Plantas/análisis , Espectroscopía Infrarroja Corta , Tibet
13.
Molecules ; 19(12): 21541-59, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25532848

RESUMEN

Start codon targeted polymorphism (SCoT) analysis was employed to distinguish 37 whipgrass (Hemarthria compressa L.) clones and assess the genetic diversity and population structure among these genotypes. The informativeness of markers was also estimated using various parameters. Using 25 highly reproducible primer sets, 368 discernible fragments were generated. Of these, 282 (77.21%) were polymorphic. The number of alleles per locus ranged from five to 21, and the genetic variation indices varied. The polymorphism information content (PIC) was 0.358, the Shannon diversity index (H) was 0.534, the marker index (MI) was 4.040, the resolving power (RP) was 6.108, and the genotype index (GI) was 0.782. Genetic similarity coefficients (GS) between the accessions ranged from 0.563 to 0.872, with a mean of 0.685. Their patterns observed in a dendrogram constructed using the unweighted pair group method with arithmetic mean analysis (UPGMA) based on GS largely confirmed the results of principal coordinate analysis (PCoA). PCoA was further confirmed by Bayesian model-based STRUCTURE analysis, which revealed no direct association between genetic relationship and geographical origins as validated by Mantel's test (r = 0.2268, p = 0.9999). In addition, high-level genetic variation within geographical groups was significantly greater than that between groups, as determined by Shannon diversity analysis, analysis of molecular variance (AMOVA) and Bayesian analysis. Overall, SCoT analysis is a simple, effective and reliable technique for characterizing and maintaining germplasm collections of whipgrass and related species.


Asunto(s)
Poaceae/genética , Polimorfismo Genético , Secuencia de Bases , Teorema de Bayes , China , Análisis por Conglomerados , Codón Iniciador/genética , Cartilla de ADN/genética , Genes de Plantas , Marcadores Genéticos , Haplotipos , Modelos Genéticos , Filogenia , Filogeografía
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2085-8, 2014 Aug.
Artículo en Zh | MEDLINE | ID: mdl-25474939

RESUMEN

Chicory (Cichorium intybus L.) is a new type of forage grasses of high yield and quality with a great value of popularization and utilization. In vitro dry matter digestibility (IVDMD) is one of the important indicators of the nutritional value of forage evaluation. For the study of establishment of Chicory IVDMD NIRS quantitative analysis model, seventy-two species with different genotypes, different growth stages of 204 chicory samples of aboveground material were collected, and by Fourier transform near-infrared diffuse reflectance spectroscopy, through the use of different regression algorithms, can comparing different spectral ranges and spectral pretreatment methods, eight chicory IVDMD NIRS calibration models were established, and the best calibration model parameters were chosen. Its calibration coefficient of determination (Ri) and external validation coefficient of determination (Rval2) were 0.95317 and 0.90455, calibration standard deviation (RMSEC) and predictive standard deviation (RMSEP) was 1.977 99% and 2.008 82%, and the correlation coefficient (r) between predicted values and chemical values was 0.95108. The results show that using NIRS to determine chicory IVDMD is feasible, and provided a rapid analysis method for the determination IVDMD of chicory.


Asunto(s)
Cichorium intybus , Valor Nutritivo , Espectroscopía Infrarroja Corta , Calibración , Modelos Teóricos
15.
Plants (Basel) ; 12(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514333

RESUMEN

Drought is one of the most significant limiting factors affecting plant growth and development on the Qinghai-Tibet Plateau (QTP). Mining the drought-tolerant genes of the endemic perennial grass of the QTP, Siberian wildrye (Elymus sibiricus), is of great significance to creating new drought-resistant varieties which can be used in the development of grassland livestock and restoring natural grassland projects in the QTP. To investigate the transcriptomic responsiveness of E. sibiricus to drought stress, PEG-induced short- and long-term drought stress was applied to two Siberian wildrye genotypes (drought-tolerant and drought-sensitive accessions), followed by third- and second-generation transcriptome sequencing analysis. A total of 40,708 isoforms were detected, of which 10,659 differentially expressed genes (DEGs) were common to both genotypes. There were 2107 and 2498 unique DEGs in the drought-tolerant and drought-sensitive genotypes, respectively. Additionally, 2798 and 1850 DEGs were identified in the drought-tolerant genotype only under short- and long-term conditions, respectively. DEGs numbering 1641 and 1330 were identified in the drought-sensitive genotype only under short- and long-term conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that all the DEGs responding to drought stress in E. sibiricus were mainly associated with the mitogen-activated protein kinase (MAKP) signaling pathway, plant hormone signal transduction, the linoleic acid metabolism pathway, the ribosome pathway, and plant circadian rhythms. In addition, Nitrate transporter 1/Peptide transporter family protein 3.1 (NPF3.1) and Auxin/Indole-3-Acetic Acid (Aux/IAA) family protein 31(IAA31) also played an important role in helping E. sibiricus resist drought. This study used transcriptomics to investigate how E. sibiricus responds to drought stress, and may provide genetic resources and references for research into the molecular mechanisms of drought resistance in native perennial grasses and for breeding drought-tolerant varieties.

16.
Genes (Basel) ; 14(9)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37761930

RESUMEN

Reed canary grass (Phalaris arundinacea L.) is known for its tolerance to drought, heavy metals, and waterlogging, making it a popular choice for forage production and wetland restoration in the Qinghai-Tibet Plateau (QTP). To accurately assess gene expression in reed canary grass under different abiotic stresses, suitable reference genes need to be identified and validated. Thirteen candidate reference gene sequences were selected and screened using RT-qPCR to detect their expression levels in reed canary grass leaves under drought, salt, cadmium, and waterlogging stresses. Four algorithms were used to assess the stability of the expression levels of the candidate reference genes. The most stably expressed genes were UBC and H3 under drought Cd, ETF and CYT under salt stress, and ETF and TUB under waterlogging stress. GAPDH was found to be less stable under abiotic stresses. PIP-1, PAL, NAC 90, and WRKY 72A were selected as response genes for quantitative expression assessment under drought, salt, Cd, and waterlogging stresses to confirm the accuracy of the selected stable reference genes. These results provide a theoretical reference for assessing gene expression in reed canary grass under abiotic stresses.


Asunto(s)
Phalaris , Cadmio , Estrés Salino , Algoritmos , Sequías
17.
Sci Total Environ ; 897: 165336, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414176

RESUMEN

To better utilize poorly fermented oat silage on the Qinghai Tibetan Plateau, 239 samples of this biomass were collected from the plateau temperate zone (PTZ), plateau subboreal zone (PSBZ), and nonplateau climatic zone (NPCZ) in the region and analyzed for microbial community, chemical composition and in vitro gas production. Climatic factors affect the bacterial α-diversity and ß-diversity of poorly fermented oat silage, which led to the NPCZ having the highest relative abundance of Lactiplantibacillus plantarum. Furthermore, the gas production analysis showed that the NPCZ had the highest maximum cumulative gas emissions of methane. Through structural equation modeling analysis, environmental factors (solar radiation) affected methane emissions via the regulation of lactate production by L. plantarum. The enrichment of L. plantarum contributes to lactic acid production and thereby enhances methane emission from poorly fermented oat silage. Notably, there are many lactic acid bacteria detrimental to methane production in the PTZ. This knowledge will be helpful in revealing the mechanisms of environmental factors and microbial relationships influencing the metabolic processes of methane production, thereby providing a reference for the clean utilization of other poorly fermented silage.


Asunto(s)
Avena , Biocombustibles , Biocombustibles/análisis , Ensilaje/análisis , Tibet , Bacterias/metabolismo , Metano/análisis
18.
Molecules ; 17(4): 4424-34, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-22499189

RESUMEN

E. sibiricus L., the type species of the genus Elymus, is a perennial, self-pollinating and allotetraploid grass indigenous to Northern Asia, which in some countries can be cultivated as an important forage grass. In the present study, eighty-six Elymus sibiricus accessions, mostly from different parts of Asia, were assayed by gliadin markers based on Acid Polyacrylamide Gel Electrophoresis to differentiate and explore their genetic relationships. The genetic similarity matrix was calculated by 47 polymorphic bands, which ranged from 0.108 to 0.952 with an average of 0.373. The total Shannon diversity index (H(o)) and the Simpson index (H(e)) was 0.460 and 0.302, respectively. Cluster analysis showed a clear demarcation between accessions from Qinghai-Tibetan Plateau, China and the others as separate groups. The clustering pattern was probably dependent on geographic origin and ecological adaptability of the accessions. The population structure analysis based on Shannon indices showed that the proportion of variance within and among the five geographic regions of the Northern Hemisphere was 55.9 and 44.1%, respectively, or 63.4 and 36.6% within and among six Chinese provinces. This distinct geographical divergence was perhaps depended on ecogeographical conditions such as climate difference and mountain distribution. The results of gladin analysis in this study are useful for the collection and preservation of E. sibiricus germplasm resources.


Asunto(s)
Elymus/genética , Variación Genética , Gliadina/genética , Análisis por Conglomerados , Elymus/clasificación , Filogenia , Filogeografía , Polimorfismo Genético
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(7): 1748-53, 2012 Jul.
Artículo en Zh | MEDLINE | ID: mdl-23016317

RESUMEN

The majority of nutrients in ruminants and other herbivores come from forages. Forage quality not only affects the growth and production efficiency of livestock, but also determines the final output and quality of livestock products. Forage quality mainly depends on nutrient concentrations and their digestibility, palatability and the level of presence of antiquality factors and mycotoxins in forage. Near infrared reflectance spectroscopy (NIRS) has been widely used in many research areas because it is a inexpensive, rapid, simple and nondestructive technique offering the potential for qualitative and quantitative analysis. The present paper briefly introduces the principle and characteristics of NIRS, detailedly expounds the application of NIRS in forage quality. In addition, other applications of near infrared spectroscopy technique in forage are also discussed, including forage breeding, identification of variety and classification by kind. This paper comprehensively reviews the status quo of application of NIRS in forage filed, in order to contribute to promoting development of NIRS in this field in China.


Asunto(s)
Alimentación Animal/análisis , Espectroscopía Infrarroja Corta , China , Micotoxinas , Control de Calidad
20.
Front Plant Sci ; 13: 874409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800604

RESUMEN

The genetic adaptations to harsh climatic conditions in high altitudes and genetic basis of important agronomic traits are poorly understood in Elymus sibiricus L. In this study, an association population of 210 genotypes was used for population structure, selective sweep analysis, and genome-wide association study (GWAS) based on 88,506 single nucleotide polymorphisms (SNPs). We found 965 alleles under the natural selection of high altitude, which included 7 hub genes involved in the response to UV, and flavonoid and anthocyanin biosynthetic process based on the protein-protein interaction (PPI) analysis. Using a mixed linear model (MLM), the GWAS test identified a total of 1,825 significant loci associated with 12 agronomic traits. Based on the gene expression data of two wheat cultivars and the PPI analysis, we finally identified 12 hub genes. Especially, in plant height traits, the top hub gene (TOPLESS protein) encoding auxins and jasmonic acid signaling pathway, shoot apical meristem specification, and xylem and phloem pattern formation was highly overexpressed. These genes might play essential roles in controlling the growth and development of E. sibiricus. Therefore, this study provides fundamental insights relevant to hub genes and will benefit molecular breeding and improvement in E. sibiricus and other Elymus species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA