Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257201

RESUMEN

The surfactant solution is crucial in facilitating the spontaneous imbibition process for the recovery of oil in tight reservoirs. Further investigation is required to examine the fluid flow in porous mediums and the process of crude oil stripping by a surfactant solution during spontaneous imbibition. Hence, this study aims to determine the free motion properties of oil and water in porous mediums using the finite-element approach to solve the multiphase flow differential equation, taking into account the capillary pressure. An investigation was conducted to examine the impact of oil viscosity and interfacial tension on the mean liquid flow rate and oil volume fraction. An experimental study was conducted to investigate the impact of surface tension, interfacial tension, and wetting angle on crude-oil-stripping efficiency. The findings indicate that the stripped crude oil migrated through porous mediums as individual oil droplets, exhibiting a degree of stochasticity in its motion. When the interfacial tension is reduced, the average velocity of the fluid in the system decreases. The crude oil exhibited a low viscosity, high flow capacity, and a high average flow rate within the system. Once the concentration of the surfactant solution surpasses a specific threshold, it binds with the oil to create colloidal aggregates, resulting in the formation of micelles and influencing the efficiency of the stripping process. As the temperature rises, the oil-stripping efficiency also increases. Simultaneously, an optimal range of wetting angle, surface tension, and interfacial tension could enhance the effectiveness of removing oil using surfactant solutions. The research results of this paper enrich the enhanced oil recovery mechanism of surfactant and are of great significance to the development of tight reservoirs.

2.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611861

RESUMEN

The use of a surfactant solution during oil and gas field development might improve the recovery rate of oil reservoirs. However, the serious emulsification of the produced liquid will bring challenges to the subsequent treatment process and storage and transportation. It is urgent to understand the coalescence mechanism of crude oil under the action of surfactant solution. This research investigates the coalescence mechanism of numerous oil droplets under liquid flow perturbation. The model was established to study the coalescence process of multiple oil droplets. The effects of the number of oil droplets under homogeneous conditions, the size of oil droplets, and the distance between oil droplets under non-homogeneous conditions on the coalescence process were analyzed. Meanwhile, the change rules of the completion time of oil droplet coalescence were drawn. The results show that the smaller the size of individual oil droplets under non-homogeneous conditions, the longer the coalescence completion time is, and when the size of individual oil droplets reaches the nanometer scale, the time for coalescence of oil droplets is dramatically prolonged. Compared to static circumstances, the time it takes for oil droplets to coalesce is somewhat shorter under gravity. In the fluid flow process, in the laminar flow zone, the coalescence time of oil droplets decreases with the increase of the liquid flow rate. However, in the turbulent flow zone, the coalescence time of oil droplets increases with the increase in the liquid flow rate. The coalescence time is in the range of 600~1000 ms in the flow rate of 0.05~0.2 m/s. In the presence of surfactants, the oil content in the emulsion system increases under the influence of pumping flow. The change in oil content rate with various surfactants is less impacted by flow rate, owing to the stable emulsion structure created by the extracted fluid within the reservoir. The study findings presented in this research provide technical assistance for effective crude oil storage and transportation.

3.
Small ; 19(45): e2303542, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431212

RESUMEN

Rabies is a zoonotic neurological disease caused by the rabies virus (RABV) that is fatal to humans and animals. While several post-infection treatment have been suggested, developing more efficient and innovative antiviral methods are necessary due to the limitations of current therapeutic approaches. To address this challenge, a strategy combining photodynamic therapy and immunotherapy, using a photosensitizer (TPA-Py-PhMe) with high type I and type II reactive oxygen species (ROS) generation ability is proposed. This approach can inactivate the RABV by killing the virus directly and activating the immune response. At the cellular level, TPA-Py-PhMe can reduce the virus titer under preinfection prophylaxis and postinfection treatment, with its antiviral effect mainly dependent on ROS and pro-inflammatory factors. Intriguingly, when mice are injected with TPA-Py-PhMe and exposed to white light irradiation at three days post-infection, the onset of disease is delayed, and survival rates improved to some extent. Overall, this study shows that photodynamic therapy and immunotherapy open new avenues for future antiviral research.


Asunto(s)
Fotoquimioterapia , Virus de la Rabia , Rabia , Humanos , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno , Rabia/prevención & control , Rabia/tratamiento farmacológico , Antivirales
4.
Eur J Nucl Med Mol Imaging ; 50(3): 825-838, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322187

RESUMEN

PURPOSE: Myocardial ischemia-reperfusion (I/R) injury is associated with systemic oxidative stress, cardiac mitochondrial homeostasis, and cardiomyocyte apoptosis. Metformin has been recognized to attenuate cardiomyocyte apoptosis. However, the longitudinal effects and pathomechanism of metformin on the regulation of myocardial mitohormesis following I/R treatment remain unclear. This study aimed to investigate the longitudinal effects and mechanism of metformin in regulating cardiac mitochondrial homeostasis by serial imaging with the 18-kDa translocator protein (TSPO)-targeted positron emission tomography (PET) tracer 18F-FDPA. METHODS: Myocardial I/R injury was established in Sprague-Dawley rats, which were treated with or without metformin (150 mg/kg per day). Serial gated 18F-FDG and 18F-FDPA PET imaging were performed at 1, 4, and 8 weeks after surgery, followed by analysis of ventricular remodelling and cardiac mitochondrial homeostasis. The correlation between Hsp60 and 18F-FDPA uptake was analyzed. After PET imaging, the activity of antioxidant enzymes, immunostaining, and western blot analysis were performed to analyze the spatio-temporal effects and pathomechanism of metformin for cardiac protection after myocardial I/R injury. RESULTS: Oxidative stress and apoptosis increased 1 week after myocardial I/R injury (before significant progression of ventricular remodelling). TSPO expression was correlated with Hsp60 expression and was co-localized with inflammatory CD68+ macrophages in the infarct area, and TSPO uptake was associated with an upregulation of AMPK-p/AMPK and a downregulation of Bcl-2/Bax. However, these effects were reversed with metformin treatment. Eight weeks after myocardial I/R injury (representing the advanced stage of heart failure), 18F-FDPA uptake in myocardial cells in the distal non-infarct area increased without CD68+ expression, whereas the activity decreased with metformin treatment. CONCLUSION: Taken together, these results show that a prolonged metformin treatment has pleiotropic protective effects against myocardial I/R injury associated with a regional and temporal dynamic balance between mitochondrial homeostasis and cardiac outcome, which were assessed by TSPO-targeted imaging during cardiac remodelling.


Asunto(s)
Metformina , Daño por Reperfusión Miocárdica , Ratas , Animales , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratas Sprague-Dawley , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Remodelación Ventricular , Miocitos Cardíacos/metabolismo , Homeostasis , Apoptosis
5.
Inorg Chem ; 62(51): 21233-21239, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38091505

RESUMEN

CaCu3Mn2Te2O12 was synthesized using high-temperature and high-pressure conditions. The compound possesses an A- and B site ordered quadruple perovskite structure in Pn3̅ symmetry with the charge combination of CaCu32+Mn22+Te26+O12. A ferrimagnetic phase transition originating from the antiferromagnetic interaction between A' site Cu2+ and B site Mn2+ ions is found to occur at TC ≈ 100 K. CaCu3Mn2Te2O12 also shows insulating electric conductivity. Optical measurement demonstrates the energy bandgap to be about 1.9 eV, in agreement with the high B site degree of chemical order between Mn2+ and Te6+. The first-principles theoretical calculations confirm the Cu2+(↓)-Mn2+(↑) ferrimagnetic coupling as well as the insulating nature with an up-spin direct bandgap. The current CaCu3Mn2Te2O12 provides an intriguing example of an intrinsic ferrimagnetic insulator with promising applications in advanced spintronic devices.

6.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835160

RESUMEN

Phoebe bournei is a rare and endangered plant endemic to China with higher-value uses in essential oil and structural wood production. Its seedlings are prone to death because of its undeveloped system. Paclobutrazol (PBZ) can improve root growth and development in certain plants, but its concentration effect and molecular mechanism remain unclear. Here, we studied the physiological and molecular mechanisms by which PBZ regulates root growth under different treatments. We found that, with moderate concentration treatment (MT), PBZ significantly increased the total root length (69.90%), root surface area (56.35%), and lateral root number (47.17%). IAA content was the highest at MT and was 3.83, 1.86, and 2.47 times greater than the control, low, and high-concentration treatments. In comparison, ABA content was the lowest and reduced by 63.89%, 30.84%, and 44.79%, respectively. The number of upregulated differentially expressed genes (DEGs) induced at MT was more than that of down-regulated DEGs, which enriched 8022 DEGs in response to PBZ treatments. WGCNA showed that PBZ-responsive genes were significantly correlated with plant hormone content and involved in plant hormone signal transduction and MAPK signal pathway-plant pathways, which controls root growth. The hub genes are observably associated with auxin, abscisic acid syntheses, and signaling pathways, such as PINs, ABCBs, TARs, ARFs, LBDs, and PYLs. We constructed a model which showed PBZ treatments mediated the antagonism interaction of IAA and ABA to regulate the root growth in P. bournei. Our result provides new insights and molecular strategies for solving rare plants' root growth problems.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Transducción de Señal , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Molecules ; 28(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050024

RESUMEN

The solid particles in the produced fluids from the oil wells treated by compound flooding can greatly stabilize the strength of the interfacial film and enhance the stability of the emulsion, increasing the difficulty of processing these produced fluids on the ground. In this paper, the oil phase and the water phase were separated from the SPAN series emulsions by electrical dehydration technology and adding demulsifier agents. The changing trends of the current at both ends of the electrodes were recorded during the process. The efficient demulsification of the emulsion containing solid particles was studied from the perspective of oil-water separation mechanisms. Combined with the method of molecular dynamics simulation, the effect of the addition of a demulsifier on the free movement characteristics of crude oil molecules at the position of the liquid film of the emulsion were further analyzed. The results indicated that the presence of solid particles greatly increased the emulsifying ability of the emulsion and reduced its size. Under the synergistic effect of demulsifier and electric dehydration, the demulsification effect of the emulsion increased significantly, and the demulsification rate could reach more than 82%. The addition of demulsifiers changed the stable surface state of the solid particles. The free movement ability of the surrounding crude oil molecules was enhanced, which led to a decrease in the strength of the emulsion film so that the water droplets in the emulsions were more likely to coalesce and break. These results are of great significance for the efficient treatment of wastewater from oilfields, promoting the sustainability of environment-friendly oilfield development.

8.
Phys Chem Chem Phys ; 23(3): 2222-2228, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33439169

RESUMEN

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the evolution of carbon structures and the kinetics of the adlayer graphene nucleation between the graphene top layer (GTL) and the Ni(111) substrate. Compared to the epitaxial GTL, the weaker interaction between the nonepitaxial GTL and the Ni(111) substrate makes the nucleation of the adlayer more favorable. Furthermore, the defects involving in the adlayer graphene are easier to be healed by adopting the nonepitaxial GTL. Our results agree well with the experimental observation and demonstrate that the adlayer graphene with a high quality can be grown underneath the nonepitaxial GTL on Ni-like substrates.

9.
Eur Phys J E Soft Matter ; 41(2): 29, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29488019

RESUMEN

Nanoparticle can adsorb at the air-water interface and gives rise to the special interfacial mechanical properties. With the influence of external stimulus, the adsorption state of the particles may be changed and in turn the mechanical properties of the particle layer. In this work, we study the mechanical properties of a monolayer of silica nanoparticles deposited in the Langmuir trough. The area of the monolayer was varied sinusoidally by two oscillating barriers and the surface pressure was monitored by two orthogonal Wilhelmy plates. It has been found that the surface pressure of the particle layer exhibits a significant anisotropic effect. At the early stage of the oscillation, the surface pressure versus time is sinusoidal. However, with the increase of the oscillation time, the response of the particle layer significantly deviates the sinusoidal function, which implies that the response becomes nonlinear caused by a long-term oscillation. The fast Fourier Transformation (FFT) of the surface pressure data shows that the non-sinusoidal response is composed of several fundamental frequency responses. We eventually obtained the time variation of the compression modulus E and shear modulus G . A possible mechanism was proposed to account for the mechanical properties change and the nonlinear behavior of the particle monolayer.

10.
Phys Chem Chem Phys ; 20(21): 14619-14626, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29770417

RESUMEN

Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

11.
Anal Chem ; 89(4): 2583-2591, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28192999

RESUMEN

Cyanide is extremely toxic to organisms but difficult to detect in living biological specimens. Here, we report a new CN- sensing platform based on unmodified Au-Ag alloy nanoboxes that etch in the presence of this analyte, yielding a shift in plasmon frequency that correlates with the analyte concentration. Significantly, when combined with dark field microscopy, these particle probes can be used to measure CN- concentrations in HeLa cells and in vivo in Zebra fish embryos. The limit of detection (LOD) of the novel method is 1 nM (below the acceptable limit defined by the World Health Organization), and finite-difference time-domain (FDTD) calculations are used to understand the CN- induced spectral shifts.


Asunto(s)
Cianuros/análisis , Oro/química , Nanoestructuras/química , Plata/química , Resonancia por Plasmón de Superficie , Aleaciones/química , Animales , Embrión no Mamífero/química , Embrión no Mamífero/metabolismo , Células HeLa , Humanos , Límite de Detección , Pez Cebra/crecimiento & desarrollo
12.
Nanotechnology ; 28(15): 155203, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28222043

RESUMEN

Photoluminescence (PL) from Si and SiGe is comprehensively modified by Au NPs under excitation without surface plasmon resonance. Moreover, the PL sensitively depends on the size of the Au NPs, the excitation power and the thickness of the Si layer between the Au NPs and SiGe. A model is proposed in terms of the electrostatic effects of Au NPs naturally charged by electron transfer through the nanoscale metal/semiconductor Schottky junction without an external bias or external injection of carriers. The model accounts well for all the unique PL features. It also reveals that Au NPs can substantially modify the energy band structures, distribution and transition of carriers in the nanoscale region below the Au NPs. Our results demonstrate that Au NPs on semiconductors can efficiently modulate light-matter interaction.

13.
Phys Chem Chem Phys ; 19(23): 15394-15402, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28580468

RESUMEN

Herein, two-dimensional materials for photocatalytic water splitting are drawing more attention due to the larger surface areas for photocatalytic reactions and shorter migration distances for photogenerated carriers. In this present study, we systematically investigated the fundamental electronic properties of GaS1-xTex monolayers (x = 0, 0.125, 0.25, 0.5, 0.75, 0.875, and 1) for water splitting based on density functional theory (DFT) using the HSE06 functional. The simulation of the defect formation energy under each experimental synthetic condition shows that the Te substitutional impurity in GaS can be relatively easily realized under Ga-rich conditions. Our results show that the GaS0.5Te0.5 monolayer is a direct band gap (2.09 eV) semiconductor, which is attributed to the elevation of Te px/py states at the Γ point by the strain effect. Moreover, the GaS0.5Te0.5 monolayer has appropriate band edge alignment with respect to the water redox potentials in both acidic and neutral environments. Additionally, the carrier effective mass of the GaS0.5Te0.5 monolayer along the direction of Γ â†’ K is smaller than those of pristine GaS and GaTe monolayers, which can cause the carriers to quickly transfer from the photogenerated center to the surface of the photocatalyst. These results imply that the GaS0.5Te0.5 monolayer is a promising candidate as a visible-light water splitting photocatalyst, which should be properly synthesized and tested in further experimental investigations.

14.
Phys Chem Chem Phys ; 18(23): 15765-73, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27231135

RESUMEN

Two-dimensional (2D) materials with intriguing electronic characteristics open up tremendous opportunities for application in future nanoelectronic devices, and have become one of the hot subjects of today's research. Here, we firstly predict the possibility of realizing a 2D exfoliated ionic bonding nanosheet, namely the K2CoF4 nanosheet, based on first-principles calculations. Through analysis of the cleavage energy, in-plane stiffness and stability, the free-standing K2CoF4 nanosheet can be exfoliated in experiments. It is shown that the K2CoF4 nanosheet with K vacancy can transform into a ferromagnetic half-metal under moderate tensile strain, whereas the pristine K2CoF4 nanosheet is an antiferromagnetic semiconductor. Monte Carlo simulations based on the Heisenberg model predict that the Curie temperature for the K vacancy K2CoF4 nanosheet under 2% tensile strain is higher than room temperature. Therefore, our results suggest that the K2CoF4 nanosheet may be a promising material for spintronic and nanoelectronic applications.

15.
Biochem J ; 468(1): 133-44, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25734361

RESUMEN

Tandem-arranged PDZ [PSD-95 (postsynaptic density-95), Dlg (discs large homologue) and ZO-1 (zonula occludens-1)] domains often form structural and functional supramodules with distinct target-binding properties. In the present study, we found that the two PDZ domains within the PDZ34 tandem of Scribble, a cell polarity regulator, tightly pack in a 'front-to-back' mode to form a compact supramodule. Although PDZ4 contains a distorted αB/ßB pocket, the attachment of PDZ4 to PDZ3 generates an unexpected interdomain pocket that is adjacent to and integrates with the canonical αB/ßB pocket of PDZ3 to form an expanded target-binding groove. The structure of the PDZ34-target peptide complex further demonstrated that the peptide binds to this expanded target-binding groove with its upstream residues anchoring into the interdomain pocket directly. Mutations of the interdomain pocket and disruptions of the PDZ34 supramodule both interfere with its target-binding capacity. Therefore, the interdomain interface between the PDZ34 supramodule is intrinsically required for its target recognition and determines its target-binding specificity. This interdomain interface-mediated specific recognition may represent a novel mode of target recognition and would broaden the target-binding versatility for PDZ supramodules. The supramodular nature and target recognition mode of the PDZ34 tandem found in the present study would also help to identify the new binding partners of Scribble and thus may direct further research on the PDZ domain-mediated assembly of Scribble polarity complexes.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Supresoras de Tumor/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Dominios PDZ , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Tohoku J Exp Med ; 238(4): 279-86, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27063419

RESUMEN

Apoptosis plays a critical role in tumorigenesis. TP63 inhibits the pro-apoptosis function of TP53, and CD40 increases expression of anti-apoptotic proteins. Two single nucleotide polymorphisms (SNPs), rs6790167 (g243059A>G) in intron 9 of TP63 and rs1535045 (g6194C>T) in intron 1 of CD40 respectively, may affect the susceptibility of lung cancer. To evaluate the association of these SNPs with lung cancer, we performed a case-control study with 258 patients, including 149 adenocarcinoma and 47 small cell lung cancer, and 270 controls. Genotyping was conducted using allele-specific polymerase chain reaction and pyrosequencing. We found that rs6790167 and rs1535045 are associated with the risk of lung adenocarcinoma (P = 0.048) and small cell lung cancer (P = 0.019), respectively. Non-smoking males carrying the GG genotype of rs6790167 had higher risk for lung adenocarcinoma than individuals carrying the AA genotype (OR = 7.58, 95% CI: 2.43-23.65). Compared to the TT genotype of rs1535045, non-smoking women with the CC genotype had higher risk for lung adenocarcinoma (OR = 4.20, 95% CI: 1.34-13.12). After stratified analysis based on clinical characteristics, the frequency of the CC genotype of rs1535045 was higher in patients at I-II stages (P = 0.013) or patients whose tumor markers were negative (P = 0.003). Individuals carrying both the GG genotype of rs6790167 and the CC genotype of rs1535045 were associated with significantly higher risk for lung adenocarcinoma. Thus, the polymorphisms in the TP63 and CD40 genes are associated with lung cancer in a Chinese Han population.


Asunto(s)
Pueblo Asiatico/genética , Antígenos CD40/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Apoptosis , Femenino , Humanos , Neoplasias Pulmonares , Masculino , Persona de Mediana Edad , Factores de Riesgo
17.
Artículo en Inglés | MEDLINE | ID: mdl-25476206

RESUMEN

Co-ordination of cell proliferation, differentiation, and apoptosis maintains tissue development and homeostasis under normal or stress conditions. Recently, the highly conserved Hippo signaling pathway, discovered in Drosophila melanogaster and mammalian system, has been implicated as a key regulator of organ size control. Importantly, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to maintain homeostasis at the cellular and organic levels. The mutation or deregulation of the key components in the pathway will result in degenerative disorder, developmental defects, or tumorigenesis. The purpose of this review is to summarize the recent findings and discuss how Hippo pathway responds to cellular stress and regulates early development events, tissue homeostasis as well as tumorigenesis.


Asunto(s)
Proliferación Celular/fisiología , Homeostasis/fisiología , Estrés Oxidativo/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Animales , Vía de Señalización Hippo , Humanos , Modelos Biológicos
18.
Scand J Clin Lab Invest ; 74(8): 693-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25223598

RESUMEN

OBJECTIVE: To develop a gold nanoparticle-based visual DNA microarray for simple and rapid screening of EGFR gene mutations. METHODS: The DNA fragments contain epidermal growth factor receptor (EGFR) exons 18, 19, 20 and 21 were amplified by polymerase chain reaction (PCR) using biotin-modified primers. The amino-modified oligonucleotides were immobilized on glass surface, which were used as the capturing probes to bind the complement biotinylated target DNA. After the PCR product has been hybridized to the immobilized capture probe DNA on the glass slides, the Streptavidin-conjugated gold nanoparticles were introduced to the microarray via specific binding to 5'-end biotin of the PCR products. The hybridization signal on array spots was enhanced and visualized by silver amplification. The EGFR mutation in 286 clinical samples from cancer patients were tested using the gold nanoparticle-based microarray and verified with Sanger DNA sequencing method. RESULTS: A novel visual DNA microarray has been developed to detect EGFR mutations in tumor tissue specimens rapidly; its limit of detection (LOD) is up to 10(-9) mol/L and distinguishes power to detect 5% gene mutation in the mixture samples. CONCLUSION: For its high specificity and sensitivity, simplicity, lower price and higher speed, the present visual mutation detecting technique has potential application in clinical fields.


Asunto(s)
Análisis Mutacional de ADN/métodos , Receptores ErbB/genética , Secuencia de Bases , Carcinoma de Pulmón de Células no Pequeñas/genética , Análisis Mutacional de ADN/normas , Oro/química , Humanos , Límite de Detección , Neoplasias Pulmonares/genética , Nanopartículas del Metal/química , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos
19.
Environ Sci Pollut Res Int ; 31(16): 24282-24301, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438641

RESUMEN

Exposure to metals increases the risk of many diseases and has become a public health concern. However, few studies have focused on the effect of metal on abdominal aortic calcification (AAC), especially the combined effects of metal mixtures. In this study, we aim to investigate the combined effect of metals on AAC risk and determine the key components in the multiple metals. We tried to investigate the relationship between multiple metal exposure and AAC risk. Fourteen urinary metals were analyzed with five statistical models as follows: generalized linear regression, weighted quantile sum regression (WQS), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) models. A total of 838 participants were involved, of whom 241 (28.8%) had AAC. After adjusting for covariates, in multiple metal exposure logistic regression, cadmium (Cd) (OR = 1.364, 95% CI = 1.035-1.797) was positively associated with AAC risk, while cobalt (Co) (OR = 0.631, 95% CI = 0.438-0.908) was negatively associated with AAC risk. A significant positive effect between multiple metal exposure and AAC risk was observed in WQS (OR = 2.090; 95% CI = 1.280-3.420, P < 0.01), Qgcomp (OR = 1.522, 95% CI = 1.012-2.290, P < 0.05), and BKMR models. It was found that the positive association may be driven primarily by Cd, lead (Pb), uranium (U), and tungsten (W). Subgroups analysis showed the association was more significant in participants with BMI ≥ 25 kg/m2, abdominal obesity, drinking, and smoking. Our study shows that exposure to multiple metals increases the risk of AAC in adults aged ≥ 40 years in the USA and that Cd, Pb, U, and W are the main contributors. The association is stronger in participants who are obese, smoker, or drinker.


Asunto(s)
Cadmio , Metales Pesados , Adulto , Humanos , Teorema de Bayes , Plomo , Encuestas Nutricionales , Cobalto , Obesidad
20.
Heliyon ; 10(11): e32253, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867955

RESUMEN

Background: Sepsis is a common critical illness in intensive care unit (ICU) and an important risk factor for intensive care unit-acquired weakness (ICU-AW). The objective of the study is to analyze the risk factors of ICU-AW in septic patients. Methods: A total of 264 septic patients admitted to the General Hospital of the Western Theater Command from January 2018 to April 2022 were included in this study. The cohort was divided into 2 groups according to the presence or absence of ICU-AW. Clinical characteristics included age, sex, body mass index, length of ICU stay, multiple organ dysfunction syndrome, acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ), mechanical ventilation time, intubation, tracheotomy, protective constraint, lactic acid, fasting blood glucose, etc. The clinical characteristics of sepsis were evaluated using logistic regression analysis. Results: A total of 114 septic patients suffered ICU-AW during their ICU stay. Multivariate binary logistic regression analysis showed that APACHE Ⅱ score, mechanical ventilation time, protective constraint, and lactic acid were independent risk factors for ICU-AW in septic patients. The areas under the receiver operating characteristic curve (AUCs) were 0.791, 0.740 and 0.812, all P < 0.05, and the optimal cut-off values were 24 points, 5 days and 2.12 mmol/L, respectively. Conclusions: A high APACHE Ⅱ score, long mechanical ventilation time, protective constraint and high lactate concentration are independent risk factors for ICU-AW in septic patients. An APACHE Ⅱ score greater than 24 points, mechanical ventilation time longer than 5 days and lactate concentration higher than 2.12 mmol/L are likely to cause ICU-AW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA