Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999994

RESUMEN

Quinoa is a nutritious crop that is tolerant to extreme environmental conditions; however, low-temperature stress can affect quinoa growth, development, and quality. Considering the lack of molecular research on quinoa seedlings under low-temperature stress, we utilized a Weighted Gene Co-Expression Network Analysis to construct weighted gene co-expression networks associated with physiological indices and metabolites related to low-temperature stress resistance based on transcriptomic data. We screened 11 co-expression modules closely related to low-temperature stress resistance and selected 12 core genes from the two modules that showed the highest associations with the target traits. Following the functional annotation of these genes to determine the key biological processes and metabolic pathways involved in low-temperature stress, we identified four important transcription factors involved in resistance to low-temperature stress: gene-LOC110731664, gene-LOC110736639, gene-LOC110684437, and gene-LOC110720903. These results provide insights into the molecular genetic mechanism of quinoa under low-temperature stress and can be used to breed lines with tolerance to low-temperature stress.


Asunto(s)
Chenopodium quinoa , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Plantones , Chenopodium quinoa/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Frío , Respuesta al Choque por Frío/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Genes de Plantas
2.
Environ Sci Technol ; 57(48): 19453-19462, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956114

RESUMEN

Aquatic eco-neurotoxicology is an emerging field that requires new analytical systems to study the effects of pollutants on animal behaviors. This is especially true if we are to gain insights into one of the least studied aspects: the potential perturbations that neurotoxicants can have on cognitive behaviors. The paucity of experimental data is partly caused by a lack of low-cost technologies for the analysis of higher-level neurological functions (e.g., associative learning) in small aquatic organisms. Here, we present a proof-of-concept prototype that utilizes a new real-time animal tracking software for on-the-fly video analysis and closed-loop, external hardware communications to deliver stimuli based on specific behaviors in aquatic organisms, spanning three animal phyla: chordates (fish, frog), platyhelminthes (flatworm), and arthropods (crustacean). The system's open-source software features an intuitive graphical user interface and advanced adaptive threshold-based image segmentation for precise animal detection. We demonstrate the precision of animal tracking across multiple aquatic species with varying modes of locomotion. The presented technology interfaces easily with low-cost and open-source hardware such as the Arduino microcontroller family for closed-loop stimuli control. The new system has potential future applications in eco-neurotoxicology, where it could enable new opportunities for cognitive research in diverse small aquatic model organisms.


Asunto(s)
Artrópodos , Programas Informáticos , Animales , Conducta Animal
3.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012255

RESUMEN

Due to increasing numbers of anthropogenic chemicals with unknown neurotoxic properties, there is an increasing need for a paradigm shift toward rapid and higher throughput behavioral bioassays. In this work, we demonstrate application of a purpose-built high throughput multidimensional behavioral test battery on larval stages of Danio rerio (zebrafish) at 5 days post fertilization (dpf). The automated battery comprised of the established spontaneous swimming (SS), simulated predator response (SPR), larval photomotor response (LPR) assays as well as a new thermotaxis (TX) assay. We applied the novel system to characterize environmentally relevant concentrations of emerging pharmaceutical micropollutants including anticonvulsants (gabapentin: 400 ng/L; carbamazepine: 3000 ng/L), inflammatory drugs (ibuprofen: 9800 ng/L), and antidepressants (fluoxetine: 300 ng/L; venlafaxine: 2200 ng/L). The successful integration of the thermal preference assay into a multidimensional behavioral test battery provided means to reveal ibuprofen-induced perturbations of thermal preference behaviors upon exposure during embryogenesis. Moreover, we discovered that photomotor responses in larval stages of fish are also altered by the as yet understudied anticonvulsant gabapentin. Collectively our results demonstrate the utility of high-throughput multidimensional behavioral ecotoxicity test batteries in prioritizing emerging risks associated with neuroactive drugs that can perturb neurodevelopment. Moreover, we showcase the added value of thermotaxis bioassays for preliminary screening of emerging contaminants.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Gabapentina/farmacología , Ibuprofeno/farmacología , Larva , Natación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología
4.
Inorg Chem ; 58(9): 5988-5999, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30985125

RESUMEN

A series of alkynylgold(I) phosphine complexes containing methoxy-substituted cinnamide moieties (3a-3c and 4a-4c) have been synthesized and characterized. All of the synthesized complexes were evaluated for their cytotoxicity against three human cancer cell lines A549 (lung), D24 (melanoma), and HT1080 (fibrosarcoma) and the human embryonic kidney 293 cell line (Hek293T) as a proxy model for noncancer cells. Most of the synthesized compounds showed antiproliferative activity against cancer cell lines at low micromolar concentrations. Among these, complex 3c showed a broad spectrum of anticancer activity with IC50 values in the range of 1.53-6.05 µM against all tested cancer lines. Complex 3c possessed 20 times higher cytotoxicity than the reference drug cisplatin against D24 melanoma cells and showed significant anticancer activity in 3D spheroidal models of melanoma cells. Mechanistic investigations of 3c activity indicate thioredoxin reductase inhibition through steric and hydrogen-bonding interactions, followed by the induction of oxidative stress and a mitochondrial pathway of cell death. Compound 3c also showed significant antiangiogenic properties in a transgenic zebrafish Tg(fli1a:EGFP) in vivo model.


Asunto(s)
Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Compuestos Orgánicos de Oro/química , Compuestos Orgánicos de Oro/farmacología , Inhibidores de la Angiogénesis/síntesis química , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Cinamatos/síntesis química , Cinamatos/química , Cinamatos/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Compuestos Orgánicos de Oro/síntesis química , Fosfinas/síntesis química , Fosfinas/química , Fosfinas/farmacología , Esferoides Celulares , Células Tumorales Cultivadas , Pez Cebra
5.
Artículo en Inglés | MEDLINE | ID: mdl-38218564

RESUMEN

Chemobehavioural phenotyping presents unique opportunities for analyzing neurotoxicants and discovering behavior-modifying neuroceuticals in small aquatic model organisms such as zebrafish (Danio rerio). A recently popularized approach in this field involves the utilization of zebrafish embryos for a photo-motor response (PMR) bioassay. The PMR bioassay entails stimulating zebrafish embryos between 24 and 36 h post fertilization (hpf) with a high-intensity light stimulus, inducing a transient increase in the frequency of photo-induced embryo body flexions. These flexions can be computationally analyzed to derive behavioral signatures, enabling the categorization of neuromodulating chemicals. Despite the significant advantages of the PMR bioassay, its widespread implementation is hindered by lack of well described and straightforward high-throughput bioinformatic analysis of behavioral data. In this methods article, we present an easily implementable bioinformatics protocol specifically designed for rapid behavioral analysis of large cohorts of zebrafish specimens in PMR bioassays. We also address common pitfalls encountered during PMR analysis, discuss its limitations, and propose future directions for developing next-generation biometric analysis techniques in chemobehavioural assays utilizing zebrafish embryos.


Asunto(s)
Síndromes de Neurotoxicidad , Pez Cebra , Animales , Pez Cebra/fisiología , Embrión no Mamífero
6.
Zebrafish ; 21(1): 48-52, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193768

RESUMEN

Assessment of animals' sensory-motor functions requires precise and electronically controlled stimuli to induce and quantify specific behavioral phenotypes. However, accessible and inexpensive tools for conducting diverse sensory-motor biotests with fish are lacking. In this work, we present an open-source software and hardware interface that enables automated delivery of three independent and fully programmable stimuli for behavioral bioassays. We demonstrate the proof-of-concept application of this low-cost technology in establishing reproducible fear responses using a mechanical tap-startle stimulus in larval zebrafish. This response is characterized by a sudden burst of motion in response to a nondirectional mechanical stimulus delivered to the fish chamber. We propose that the simplicity and flexibility of this interface offer innovative opportunities for studying sensory-motor functions in various fields, including neurobiology, neuropharmacology, neurotoxicology, and aquatic ecotoxicology.


Asunto(s)
Perciformes , Pez Cebra , Animales , Pez Cebra/fisiología , Conducta Animal/fisiología , Larva/fisiología , Programas Informáticos
7.
Front Bioeng Biotechnol ; 12: 1365229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515624

RESUMEN

Continuous cropping obstacles seriously constrained the sustainable development of the ginseng industry. The allelopathic autotoxicity of ginsenosides is the key "trigger" of continuous cropping obstacles in ginseng. During harvest, the ginseng plants could be broken and remain in the soil. The decomposition of ginseng residue in soil is one of the important release ways of ginsenosides. Therefore, the allelopathic mechanism of ginsenosides through the decomposed release pathway needs an in-depth study. To investigate this allelopathic regulation mechanism, the integrated analysis of transcriptomics and metabolomics was applied. The prototype ginsenosides in ginseng were detected converse to rare ginsenosides during decomposition. The rare ginsenosides caused more serious damage to ginseng hairy root cells and inhibited the growth of ginseng hairy roots more significantly. By high-throughput RNA sequencing gene transcriptomics study, the significantly differential expressed genes (DEGs) were obtained under prototype and rare ginsenoside interventions. These DEGs were mainly enriched in the biosynthesis of secondary metabolites and metabolic pathways, phytohormone signal transduction, and protein processing in endoplasmic reticulum pathways. Based on the functional enrichment of DEGs, the targeted metabolomics analysis based on UPLC-MS/MS determination was applied to screen endogenous differential metabolized phytohormones (DMPs). The influence of prototype and rare ginsenosides on the accumulation of endogenous phytohormones was studied. These were mainly involved in the biosynthesis of diterpenoid, zeatin, and secondary metabolites, phytohormone signal transduction, and metabolic pathways. After integrating the transcriptomics and metabolomics analysis, ginsenosides could regulate the genes in phytohormone signaling pathways to influence the accumulation of JA, ABA, and SA. The conclusion was that the prototype ginsenosides were converted into rare ginsenosides by ginseng decomposition and released into the soil, which aggravated its allelopathic autotoxicity. The allelopathic mechanism was to intervene in the response regulation of genes related to the metabolic accumulation of endogenous phytohormones in ginseng. This result provides a reference for the in-depth study of continuous cropping obstacles of ginseng.

8.
Environ Toxicol Chem ; 41(10): 2342-2352, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35848752

RESUMEN

Behavioral phenotypic analysis is an emerging and increasingly important toolbox in aquatic ecotoxicology. In this regard digital video recording has recently become a standard in obtaining behavioral data. Subsequent analysis requires applications of specialized software for detecting and reconstructing animal locomotory trajectories as well as extracting quantitative biometric endpoints associated with specific behavioral traits. Despite some profound advantages for behavioral ecotoxicology, there is a notable lack of standardization of procedures and guidelines that would aid in consistently acquiring high-quality digital videos. The latter are fundamental for using animal tracking software successfully and to avoid issues such as identification switching, incorrect interpolation, and low tracking visibility. Achieving an optimized tracking not only saves user time and effort to analyze the results but also provides high-fidelity data with minimal artifacts. In the present study we, for the first time, provide an easily accessible guide on how to set up and optimize digital video acquisition while minimizing pitfalls in obtaining the highest-quality data for subsequent animal tracking. We also discuss straightforward digital video postprocessing techniques that can be employed to further enhance tracking consistency or improve the videos that were acquired in otherwise suboptimal settings. The present study provides an essential guidebook for any aquatic ecotoxicology studies that utilize digital video acquisition systems for evaluation of behavioral endpoints. Environ Toxicol Chem 2022;41:2342-2352. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Ecotoxicología , Programas Informáticos , Animales , Conducta Animal
9.
Toxics ; 10(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36136473

RESUMEN

Analysis of sensorimotor behavioral responses to stimuli such as light can provide an enhanced relevance during rapid prioritisation of chemical risk. Due to technical limitations, there have been, however, only minimal studies on using invertebrate phototactic behaviors in aquatic ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built analytical system for a high-throughput phototactic biotest with nauplii of euryhaline brine shrimp Artemia franciscana. We also, for the first time, present a novel and dedicated bioinformatic approach that facilitates high-throughput analysis of phototactic behaviors at scale with great fidelity. The nauplii exhibited consistent light-seeking behaviors upon extinguishing a brief programmable light stimulus (5500K, 400 lux) without habituation. A proof-of-concept validation involving the short-term exposure of eggs (24 h) and instar I larval stages (6 h) to sub-lethal concentrations of insecticides organophosphate chlorpyrifos (10 µg/L) and neonicotinoid imidacloprid (50 µg/L) showed perturbation in light seeking behaviors in the absence of or minimal alteration in general mobility. Our preliminary data further support the notion that phototactic bioassays can represent an attractive new avenue in behavioral ecotoxicology because of their potential sensitivity, responsiveness, and low cost.

10.
Zebrafish ; 19(1): 32-35, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35100037

RESUMEN

Large-scale chemobehavioral phenotyping with zebrafish embryos is a promising avenue for accelerated neurotoxicity testing and discovery of behavior-modifying neuroceuticals. These strategies are hampered by lack of effective embryo in-test positioning, wide-field imaging, and high-throughput bioinformatic analytics. In this study, we demonstrate advantages of using custom large-density embryo arrays in conjunction with an open-source ultra-high-definition video imaging system. Moreover, we present a high-throughput bioinformatics workflow for rapid behavioral analysis of large cohorts of specimens in photomotor response bioassays. The system validation was showcased in a proof-of-concept neurotoxicity analysis.


Asunto(s)
Embrión no Mamífero , Sistema Nervioso/efectos de los fármacos , Pruebas de Toxicidad , Pez Cebra , Animales , Embrión no Mamífero/efectos de los fármacos , Pez Cebra/fisiología
11.
Sci Total Environ ; 814: 152731, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34974022

RESUMEN

Contamination of the environment by pharmaceutical pollutants poses an increasingly critical threat to aquatic ecosystems around the world. This is particularly true of psychoactive compounds, such as antidepressant drugs, which have become ubiquitous contaminants and have been demonstrated to modify aquatic animal behaviours at very low concentrations (i.e. ng/L). Despite raising risks to the hydrosphere, there is a notable paucity of data on the long term, multigenerational effects of antidepressants at environmentally realistic concentrations. Moreover, current research has predominantly focused on mean-level effects, with little research on variation among and within individuals when considering key behavioural traits. In this work, we used a multigenerational exposure of a freshwater snail (Physa acuta) to an environmentally relevant concentration of the antidepressant fluoxetine (mean measured concentration: 32.7 ng/L, SE: 2.3). The snails were allowed to breed freely in large mesocosm populations over 3 years. Upon completion of the exposure, we repeatedly measured the locomotory activity (624 measures total), reproductive output (234 measures total) as well as morphometric endpoints (78 measures total). While we found no mean-level differences between treatments in locomotory activities, we did find that fluoxetine exposed snails (n = 46) had significantly reduced behavioural plasticity (i.e. VW; within-individual variation) in activity levels compared to unexposed snails (n = 32). As a result, fluoxetine exposed snails demonstrated significant behavioural repeatability, which was not the case for unexposed snails. Further, we report a reduction in egg mass production in fluoxetine exposed snails, and a marginally non-significant difference in morphology between treatment groups. These results highlight the potential detrimental effects of long-term fluoxetine exposure on non-target organisms at environmentally realistic dosages. Additionally, our findings demonstrate the underappreciated potential for psychoactive contaminants to have impacts beyond mean-level effects, with consequences for population resilience to current and future environmental challenges.


Asunto(s)
Fluoxetina , Contaminantes Químicos del Agua , Animales , Antidepresivos/toxicidad , Ecosistema , Fluoxetina/toxicidad , Agua Dulce , Humanos , Reproducción , Caracoles , Contaminantes Químicos del Agua/toxicidad
12.
Environ Pollut ; 314: 120202, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36169081

RESUMEN

Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.


Asunto(s)
Anfípodos , Chironomidae , Insecticidas , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Pez Cebra , Insecticidas/farmacología , Temperatura , Ibuprofeno , Clorhidrato de Venlafaxina/farmacología , Gabapentina , Anticonvulsivantes/farmacología , Estudios Prospectivos , Contaminantes Químicos del Agua/toxicidad , Australia , Larva , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios/farmacología , Preparaciones Farmacéuticas
13.
Lab Anim (NY) ; 51(3): 81-88, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35115724

RESUMEN

The use of small aquatic model organisms to investigate the behavioral effects of chemical exposure is becoming an integral component of aquatic ecotoxicology research and neuroactive drug discovery. Despite the increasing use of invertebrates for behavioral phenotyping in toxicological studies and chemical risk assessments, little is known regarding the potential for environmental factors-such as geometry, size, opacity and depth of test chambers-to modulate common behavioral responses. In this work, we demonstrate that test chamber geometry, size, opacity and depth can affect spontaneous, unstimulated behavioral responses of euryhaline crustacean Artemia franciscana first instar larval stages. We found that in the absence of any obvious directional cues, A. franciscana exhibited a strong innate wall preference behavior. Using different test chamber sizes and geometries, we found both increased wall preference and lowered overall distance traveled by the test shrimp in a smaller chamber with sharper-angled vertices. It was also determined through quantifiable changes in the chambers' color that the A. franciscana early larval stages can perceive, differentiate and react to differences in color or perhaps rather to light transmittance of the test chambers. The interaction between innate edge preference and positive phototaxis could be consistently altered with a novel photic stimulus system. We also observed a strong initial preference for depth in A. franciscana first instar larval stages, which diminished through the acclimatization. We postulate that the impact of test chamber designs on neurobehavioral baseline responses warrants further investigation, in particular considering the increased interest in behavioral eco-neurotoxicology applications.


Asunto(s)
Artemia , Contaminantes Químicos del Agua , Animales , Artemia/fisiología , Larva , Zooplancton
14.
Sci Total Environ ; 756: 143922, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33302078

RESUMEN

Neurotoxicity effects of industrial contaminants are currently significantly under investigated and require innovative analytical approaches to assess health and environmental risks at individual, population and ecosystem levels. Behavioral changes assessed using small aquatic invertebrates as standard biological indicators of the aggregate toxic effects, have been broadly postulated as highly integrative indicators of neurotoxicity with physiological and ecological relevance. Despite recent increase in understanding of the emerging value of behavioral biotests, their wider implementation especially in high-throughput environmental risk assessment assays, is largely limited by the lack of advances in analytical technologies. To date, most of the behavioral biotests have only been performed with larger-volumes and lacked dynamic flow-through conditions. They also lack features necessary for development of higher throughput neuro-behavioral ecotoxicity assays such as miniaturization and integration of automated components. We postulate that some contemporary analytical limitations can be effectively addressed by innovative Lab-on-a-Chip (LOC) technologies, an emerging and multidisciplinary field poised to bring significant miniaturization to aquatic ecotoxicity testing. Recent developments in this emerging field demonstrate particular opportunities to study a plethora of behavioral responses of small model organisms in a high-throughput fashion. In this review, we highlight recent advances in this budding new interdisciplinary field of research. We also outline the existing challenges, barriers to development and provide a future outlook in the evolving field of neurobehavioral ecotoxicology.


Asunto(s)
Ecosistema , Ecotoxicología , Animales , Ensayos Analíticos de Alto Rendimiento , Invertebrados
15.
Biomicrofluidics ; 14(1): 014110, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32002108

RESUMEN

Chemosensory avoidance behaviors of aquatic invertebrates provide a functional link between early responses to pollutants at the infraorganismal and ecologically relevant supraorganismal levels. Despite significant importance, there is, however, a notable lack of user-friendly laboratory techniques. Here, we demonstrate a scalable millifluidic platform for higher throughput quantitative chemobehavioral studies. With a proof-of-concept application of this technology, we discovered that native Australian marine amphipods Allorchestes compressa exhibit rapid avoidance behaviors against a panel of environmental stressors. This work provides a novel avenue for the development of quantitative neurobehavioral systems applicable in diverse environmental risk assessment studies.

16.
Aquat Toxicol ; 213: 105227, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31226596

RESUMEN

The environmental impact of exposure to 3D-printed plastics as well as potential migration of toxic chemicals from 3D-printed plastics remains largely unexplored. In this work we applied leachates from plastics fabricated using a stereolithography (SLA) process to early developmental stages of zebrafish (Danio rerio) to investigate developmental toxicity and neurotoxicity. Migration of unpolymerized photoinitiator, 1-hydroxycyclohexyl phenyl ketone (1-HCHPK) from a plastic solid phase to aqueous media at up to 200 mg/L in the first 24 h was detected using gas chromatography-mass spectrometry. Both plastic extracts (LC50 22.25% v/v) and 1-HCHPK (LC50 60 mg/L) induced mortality and teratogenicity within 48 h of exposure. Developmental toxicity correlated with in situ generation of reactive oxygen species (ROS), an increase in lipid peroxidation and protein carbonylation markers and enhanced activity of superoxide dismutase (SOD) and glutathione-S-transferase (GST) in embryos exposed to concentrations as low as 20% v/v for plastic extracts and 16 mg/L for 1-HCHPK. ROS-induced cellular damage led to induction of caspase-dependent apoptosis which could be pharmacologically inhibited with both antioxidant ascorbic acid and a pan-caspase inhibitor. Neuro-behavioral analysis showed that exposure to plastic leachates reduced spontaneous embryonic movement in 24-36 hpf embryos. Plastic extracts in concentrations above 20% v/v induced rapid retardation of locomotion, changes in photomotor response and habituation to photic stimuli with progressive paralysis in 120 hpf larvae. Significantly decreased acetylcholinesterase (AChE) activity with lack of any CNS-specific apoptotic phenotypes as well as lack of changes in motor neuron density, axonal growth, muscle segment integrity or presence of myoseptal defects were detected upon exposure to plastic extracts during embryogenesis. Considering implications of the results for environmental risk assessment and the growing usage of 3D-printing technologies, we speculate that some 3D-printed plastic waste may represent a significant and yet very poorly uncharacterized environmental hazard that merits further investigation on a range of aquatic and terrestrial species.


Asunto(s)
Conducta Animal , Sistema Nervioso/efectos de los fármacos , Plásticos/toxicidad , Impresión Tridimensional , Pruebas de Toxicidad , Pez Cebra/fisiología , Acetilcolinesterasa/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Biomarcadores/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Glutatión Transferasa/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Desarrollo de Músculos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA