Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; 18(48): e2204078, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36180411

RESUMEN

The demand for power-efficient micro-and nanodevices is increasing rapidly. In this regard, electrothermal nanowire-based heaters are promising solutions for the ultralow-power devices required in IoT applications. Herein, a method is demonstrated for producing a 1D nanoheater by selectively coating a suspended pyrolyzed carbon nanowire backbone with a thin Au resistive heater layer and utilizing it in a portable gas sensor system. This sophisticated nanostructure is developed without complex nanofabrication and nanoscale alignment processes, owing to the suspended architecture and built-in shadow mask. The suspended carbon nanowires, which are batch-fabricated using carbon-microelectromechanical systems technology, maintain their structural and functional integrity in subsequent nanopatterning processes because of their excellent mechanical robustness. The developed nanoheater is used in gas sensors via user-designable localization of the metal oxide semiconductor nanomaterials onto the central region of the nanoheater at the desired temperature. This allows the sensing site to be uniformly heated, enabling reliable and sensitive gas detection. The 1D nanoheater embedded gas sensor can be heated immediately to 250 °C at a remarkably low power of 1.6 mW, surpassing the performance of state-of-the-art microheater-based gas sensors. The presented technology offers facile 1D nanoheater production and promising pathways for applications in various electrothermal devices.

2.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282792

RESUMEN

Junction networks made of longitudinally connected metal oxide nanowires (MOx NWs) have been widely utilized in resistive-type gas sensors because the potential barrier at the NW junctions leads to improved gas sensing performances. However, conventional MOx-NW-based gas sensors exhibit limited gas access to the sensing sites and reduced utilization of the entire NW surfaces because the NW networks are grown on the substrate. This study presents a novel gas sensor platform facilitating the formation of ZnO NW junction networks in a suspended architecture by growing ZnO NWs radially on a suspended carbon mesh backbone consisting of sub-micrometer-sized wires. NW networks were densely formed in the lateral and longitudinal directions of the ZnO NWs, forming additional longitudinally connected junctions in the voids of the carbon mesh. Therefore, target gases could efficiently access the sensing sites, including the junctions and the entire surface of the ZnO NWs. Thus, the present sensor, based on a suspended network of longitudinally connected NW junctions, exhibited enhanced gas response, sensitivity, and lower limit of detection compared to sensors consisting of only laterally connected NWs. In addition, complete sensor structures consisting of a suspended carbon mesh backbone and ZnO NWs could be prepared using only batch fabrication processes such as carbon microelectromechanical systems and hydrothermal synthesis, allowing cost-effective sensor fabrication.

3.
Nano Lett ; 19(7): 4306-4313, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31192615

RESUMEN

The remarkable electronic and mechanical properties of nanowires have great potential for fascinating applications; however, the difficulties of assembling ordered arrays of aligned nanowires over large areas prevent their integration into many practical devices. In this paper, we show that aligned VO2 nanowires form spontaneously after heating a thin V2O5 film on a grooved SiO2 surface. Nanowires grow after complete dewetting of the film, after which there is the formation of supercooled nanodroplets and subsequent Ostwald ripening and coalescence. We investigate the growth mechanism using molecular dynamics simulations of spherical Lennard-Jones particles, and the simulations help explain how the grooved surface produces aligned nanowires. Using this simple synthesis approach, we produce self-aligned, millimeter-long nanowire arrays with uniform metal-insulator transition properties; after their transfer to a polymer substrate, the nanowires act as a highly sensitive array of strain sensors with a very fast response time of several tens of milliseconds.

4.
Sci Technol Adv Mater ; 20(1): 927-936, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608130

RESUMEN

Since 2012, a triboelectric nanogenerator (TENG) has provided new possibilities to convert tiny and effective mechanical energies into electrical energies by the physical contact of two objects. Over the past few years, with the advancement of materials' synthesis and device technologies, the TENGs generated a high instantaneous output power of several mW/cm2, required to drive various self-powered systems. However, TENGs may suffer from intrinsic and practical limitations such as air breakdown that affect the further increase of the outputs. This article provides a comprehensive review of high-output TENGs from fundamental issues through materials to devices. Finally, we show some strategies for fabricating high-output TENGs.

5.
Nanotechnology ; 28(39): 395402, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28699921

RESUMEN

Well-ordered nanostructure arrays with controlled densities can potentially improve material properties; however, their fabrication typically involves the use of complicated processing techniques. In this work, we demonstrate a uniaxial alignment procedure for fabricating poly(vinylidene fluoride) (PVDF) electrospun nanofibers (NFs) by introducing collectors with additional steps. The mechanism of the observed NF alignment, which occurs due to the concentration of lateral electric field lines around collector steps, has been elucidated via finite-difference time-domain simulations. The membranes composed of well-aligned PVDF NFs are characterized by a higher content of the PVDF ß-phase, as compared to those manufactured from randomly orientated fibers. The piezoelectric energy harvester, which was fabricated by transferring well-aligned PVDF NFs onto flexible substrates with Ag electrodes attached to both sides, exhibited a 2-fold increase in the output voltage and a 3-fold increase in the output current as compared to the corresponding values obtained for the device manufactured from randomly oriented NFs. The enhanced piezoresponse observed for the aligned PVDF NFs is due to their higher ß-phase content, denser structure, smaller effective radius of curvature during bending, greater applied strain, and higher fraction of contributing NFs.

6.
Phys Chem Chem Phys ; 18(4): 2906-12, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26732237

RESUMEN

A series of hierarchical ZnO-based antireflection coatings with different nanostructures (nanowires and nanosheets) is prepared hydrothermally, followed by means of RF sputtering of MgF2 layers for coaxial nanostructures. Structural analysis showed that both ZnO had a highly preferred orientation along the 〈0001〉 direction with a highly crystalline MgF2 shell coated uniformly. However, a small amount of Al was present in nanosheets, originating from Al diffusion from the Al seed layer, resulting in an increase of the optical bandgap. Compared with the nanosheet-based antireflection coatings, the nanowire-based ones exhibited a significantly lower reflectance (∼2%) in ultraviolet and visible light wavelength regions. In particular, they showed perfect light absorption at wavelength less than approximately 400 nm. However, a GaAs single junction solar cell with nanosheet-based antireflection coatings showed the largest enhancement (43.9%) in power conversion efficiency. These results show that the increase of the optical bandgap of the nanosheets by the incorporation of Al atoms allows more photons enter the active region of the solar cell, improving the performance.

7.
Phys Chem Chem Phys ; 17(11): 7435-42, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25704092

RESUMEN

We present a facile synthetic route to ruthenium dioxide (RuO2)-rhenium oxide (ReO3) electrospun composite nanofibers and their electrocatalytic responses for capacitance and H2O2 sensing. The contents of rhenium oxide of electrospun ruthenium dioxide (RuO2) were carefully controlled by an electrospinning process with the preparation of the precursor solutions followed by the thermal annealing process in air. The electrochemical applications of RuO2-ReO3 electrospun composite nanofibers were then investigated by modifying these materials on the surface of glassy carbon (GC) electrodes, RuO2-ReO3(n)/GC (n = 0.0, 0.07, 0.11, and 0.13), where n denotes the relative atomic ratio of Re to the sum of Ru and Re. Specific capacitance and H2O2 reduction sensitivity were remarkably enhanced depending on the amount of ReO3 increased. Among the four compositions of RuO2-ReO3(n), RuO2-ReO3(0.11)/GC showed the highest performances, i.e., a 20.9-fold higher specific capacitance (205 F g(-1) at a potential scan rate (v) of 10 mV s(-1); a capacity loss of 19% from v = 10 to 2000 mV s(-1)) and a 7.6-fold higher H2O2 reduction sensitivity (668 µA mM(-1) cm(-2), normalized by GC disk area), respectively, compared to only RuO2/GC.

8.
Phys Chem Chem Phys ; 17(5): 3004-8, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25558852

RESUMEN

We introduce a facile approach to use ruthenium dioxide (RuO2) and ruthenium (Ru) nanostructures as effective counter electrodes instead of using platinum (Pt) for dye-sensitized solar cells (DSSCs). RuO2 and Ru nanostructure layers on the FTO glass can be readily prepared by a simple annealing process followed by the spin coating process of the mixture solution containing amorphous RuO2·xH2O precursor and poly(ethylene oxide) (PEO) as a dispersion matrix at low temperature in air. The Ru metal nanostructure layer prepared by the reduction of RuO2 with H2 shows the highest efficiency of 6.77% in DSSC operation, which is comparable to the efficiency of the Pt electrode (7.87%).

9.
ACS Nano ; 18(25): 16312-16323, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864411

RESUMEN

Direct seawater electrolysis technology for sustainable hydrogen production has garnered significant attention, owing to its abundant resource supply and economic potential. However, the complex composition and high chloride concentration of seawater have hindered its practical implementation. In this study, we report an in situ-synthesized dual-phase electrocatalyst (HPS-NiMo), comprising an amorphous phosphide protective outer phase and a crystalline alloy inner phase with supplementary sulfur active sites, to improve the kinetics of direct seawater electrolysis. The HPS-NiMo exhibits long-term stability, remaining stable for periods exceeding 120 h at 200 mA cm-2; moreover, it lowers the required operating voltage to ∼1.8 V in natural seawater. The chlorine chemistry, corrosion during direct natural seawater electrolysis, and mechanism behind the high-performing catalysts are discussed. We also investigated the possibility of recovering the anode precipitates, which inevitably occurs during seawater electrolysis.

10.
ACS Nano ; 18(10): 7558-7569, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38420914

RESUMEN

Water electrolysis is emerging as a promising renewable-energy technology for the green production of hydrogen, which is a representative and reliable clean energy source. From economical and industrial perspectives, the development of earth-abundant non-noble metal-based and bifunctional catalysts, which can simultaneously exhibit high catalytic activities and stabilities for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is critical; however, to date, these types of catalysts have not been constructed, particularly, for high-current-density water electrolysis at the industrial level. This study developed a heterostructured zero-dimensional (0D)-one-dimensional (1D) PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-Ni3S2 as a self-supported catalytic electrode via interface and morphology engineering. This unique heterodimensional nanostructure of the PBSCF-Ni3S2 system demonstrates superaerophobic/superhydrophilic features and maximizes the exposure of the highly active heterointerface, endowing the PBSCF-Ni3S2 electrode with outstanding electrocatalytic performances in both HER and OER and exceptional operational stability during the overall water electrolysis at high current densities (500 h at 500 mA cm-2). This study provides important insights into the development of catalytic electrodes for efficient and stable large-scale hydrogen production systems.

11.
ACS Nano ; 18(19): 12146-12157, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38688004

RESUMEN

Current core-shell hybrids used in diverse energy-related applications possess limited dispersibility and film uniformity that govern their overall performances. Herein, we showcase superdispersible core-shell hybrids (P2VP@BaTiO3) composed of a poly(2-vinylpyridine) (P2VP) (5-20 wt %) and a barium titanate oxide (BaTiO3), maximizing dielectric constants by forming the high-quality uniform films. The P2VP@BaTiO3-based triboelectric nanogenerators (TENGs), especially the 10 wt % P2VP (P2VP10@BaTiO3)-based one, deliver significantly enhanced output performances compared to physically mixed P2VP/BaTiO3 counterparts. The P2VP10@BaTiO3-based double-layer TENG exhibits not only an excellent transferred charge density of 281.7 µC m-2 with a power density of 27.2 W m-2 but also extraordinary device stability (∼100% sustainability of the maximum output voltage for 54,000 cycles and ∼68.7% voltage retention even at 99% humidity). Notably, introducing the MoS2/SiO2/Ni-mesh layer into this double-layer TENG enables ultrahigh charge density of up to 1228 µC m-2, which is the top value reported for the TENGs so far. Furthermore, we also demonstrate a near-field communication-based sensing system for monitoring CO2 gas using our developed self-powered generator with enhanced output performance and robustness.

12.
Adv Sci (Weinh) ; : e2401494, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889336

RESUMEN

Wireless energy transfer (WET) based on ultrasound-driven generators with enormous beneficial functions, is technologically in progress by the valuation of ultrasonic metamaterials (UMMs) in science and engineering domains. Indeed, novel metamaterial structures can develop the efficiency of mechanical and physical features of ultrasound energy receivers (US-ETs), including ultrasound-driven piezoelectric and triboelectric nanogenerators (US-PENGs and US-TENGs) for advantageous applications. This review article first summarizes the fundamentals, classification, and design engineering of UMMs after introducing ultrasound energy for WET technology. In addition to addressing using UMMs, the topical progress of innovative UMMs in US-ETs is conceptually presented. Moreover, the advanced approaches of metamaterials are reported in the categorized applications of US-PENGs and US-TENGs. Finally, some current perspectives and encounters of UMMs in US-ETs are offered. With this objective in mind, this review explores the potential revolution of reliable integrated energy transfer systems through the transformation of metamaterials into ultrasound-driven active mediums for generators.

13.
Analyst ; 138(2): 443-50, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23193536

RESUMEN

We present high performance gas sensors based on an array of near single crystalline TiO(2) nanohelices fabricated by rotating oblique angle deposition (OAD). The combination of large surface-to-volume ratio, extremely small size (<30 nm) comparable to the Debye length, a near single crystallinity of TiO(2) nanohelices, together with the unique top-and-bottom electrode configuration hugely improves the H(2)-sensing performance, including ∼10 times higher response at 50 ppm, approximately a factor of 5 lower detection limit, and much faster response time than the conventional TiO(2) thin film devices. Beyond such remarkable performance enhancement, the excellent compatibility of the OAD method compared with the conventional micro-fabrication technology opens a new avenue for monolithic integration of high-performance chemoresistive sensors to fabricate a simple, low cost, reliable, yet fully functional electronic nose and multi-functional smart chips for in situ environmental monitoring.


Asunto(s)
Nariz Electrónica , Gases/análisis , Nanoestructuras/química , Titanio/química , Técnicas Biosensibles , Gases/química , Límite de Detección , Nanotecnología/instrumentación , Odorantes/análisis
14.
ACS Nano ; 17(11): 10817-10826, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37183803

RESUMEN

The introduction of heteroatoms is a widely employed strategy for electrocatalysis of transition metal dichalcogenides (TMDs). This approach activates the inactive basal plane, effectively boosting the intrinsic catalytic activity. However, the effect of atomic configurations incorporated within the TMDs' lattice on catalytic activity is not thoroughly understood owing to the lack of controllable synthetic approaches for highly doped TMDs. In this study, we demonstrate a facile approach to realizing heavily doped MoS2 with a high doping concentration above 16% via intermediate-reaction-mediated chemical vapor deposition. As the V doping concentration increased, the incorporated V atoms coalesced in a manner that enabled both the basal plane activation and electrical conductivity enhancement of MoS2. This accelerated the kinetics of the hydrogen evolution reaction (HER) through the reduced Gibbs free energy of hydrogen adsorption, as evidenced by experimental and theoretical analyses. Consequently, the coalesced V-doped MoS2 exhibited superior HER performance, with an overpotential of 100 mV at 10 mA cm-2, surpassing the pristine and single-atom-doped counterparts. This study provides an intriguing pathway for engineering the atomic doping configuration of TMDs to develop efficient 2D nanomaterial-based electrocatalysts.

15.
Adv Sci (Weinh) ; 10(3): e2205179, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442861

RESUMEN

An innovative autonomous resonance-tuning (ART) energy harvester is reported that utilizes adaptive clamping systems driven by intrinsic mechanical mechanisms without outsourcing additional energy. The adaptive clamping system modulates the natural frequency of the harvester's main beam (MB) by adjusting the clamping position of the MB. The pulling force induced by the resonance vibration of the tuning beam (TB) provides the driving force for operating the adaptive clamp. The ART mechanism is possible by matching the natural frequencies of the TB and clamped MB. Detailed evaluations are conducted on the optimization of the adaptive clamp tolerance and TB design to increase the pulling force. The energy harvester exhibits an ultrawide resonance bandwidth of over 30 Hz in the commonly accessible low vibration frequency range (<100 Hz) owing to the ART function. The practical feasibility is demonstrated by evaluating the ART performance under both frequency and acceleration-variant conditions and powering a location tracking sensor.

16.
Anal Chem ; 84(8): 3827-32, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22455500

RESUMEN

Applying nanoscale device fabrications toward biomolecules, ultra sensitive, selective, robust, and reliable chemical or biological microsensors have been one of the most fascinating research directions in our life science. Here we introduce hierarchically driven iridium dioxide (IrO(2)) nanowires directly on a platinum (Pt) microwire, which allows a simple fabrication of the amperometric sensor and shows a favorable electronic property desired for sensing of hydrogen peroxide (H(2)O(2)) and dihydronicotinamide adenine dinucleotide (NADH) without the aid of enzymes. This rational engineering of a nanoscale architecture based on the direct formation of the hierarchical 1-dimensional (1-D) nanostructures on an electrode can offer a useful platform for high-performance electrochemical biosensors, enabling the efficient, ultrasensitive detection of biologically important molecules.


Asunto(s)
Técnicas Biosensibles , Electroquímica , Peróxido de Hidrógeno/análisis , Iridio/química , NAD/análisis , Nanocables/química , Catálisis , Límite de Detección , Platino (Metal)/química
17.
Anal Chem ; 84(21): 9485-91, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23016959

RESUMEN

We demonstrate highly efficient electocatalytic activities of single crystalline RuO(2) nanorods grown on carbon fiber (CF), i.e., RuO(2) nanorod-CF hybrid microelectrode, prepared by a simple thermal annealing process from the Ru(OH)(3) precursor at 300 °C. The general electrochemical activity of a RuO(2) nanorod-CF microelectrode represents faster electron transfer for the [Fe(CN)(6)](3-/4-) couple than that of the bare CF microelectrode which are confirmed from the cyclic voltammetry (CV) measurement. Also, the amperometric response for the H(2)O(2) oxidation is remarkably facilitated at the RuO(2) nanorod-CF microelectrode by not only the enlarged surface area but the high electrocatalytic activity of the RuO(2) nanorod material itself. Furthermore, a single microelectrode of RuO(2) nanorod-CF exhibits the superior tolerance to Cl(-) ion poisoning unlike Pt-based electrocatalysts, indicating the promising sensor candidate in physiological conditions.

18.
ACS Appl Mater Interfaces ; 14(16): 18248-18260, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35413181

RESUMEN

The efficient realization of bifunctional catalysts has immense opportunities in energy conversion technologies such as water splitting. Transition metal dichalcogenides (TMDs) are considered excellent hydrogen evolution catalysts owing to their hierarchical atomic-scale layered structure and feasible phase transition. On the other hand, for efficient oxygen evolution, perovskite oxides offer the best performance based on their rational design and flexible compositional structure. A unique way to achieve an efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in a single-cell configuration is through the hybridization of TMDs with perovskite oxides to form a bifunctional electrocatalyst. Here, we report a simple yet effective strategy to inherently tune the intrinsic properties of a TMD based on MoS2 and its hybridization with LaCoO3 perovskite oxide to deliver enhanced electrocatalytic activity for both the HER and OER. Detailed Raman and XPS measurements highlighted a clear phase transformation of MoS2 from a semiconducting to metallic phase by effectively tailoring the precursor compositions. Based on this, the morphological features yielded an interesting spherical flower-shaped nanostructure with vertically aligned petals of MoS2 with increased surface-active edge sites suitable for the HER. Subsequent hybridization of nanostructured MoS2 with LaCoO3 provides a bifunctional catalytic system with an increased BET surface area of 33.4 m2/g for an overall improvement in water splitting with a low onset potential (HER: 242 mV and OER: 1.6 V @10 mA cm-2) and Tafel slope (HER: 78 mV dec-1; OER: 62.5 mV dec-1). Additionally, the bifunctional catalyst system exhibits long-term stability of up to ∼400 h under continuous operation at a high current density of 50 mA cm-2. These findings will pave the way for developing cost-effective and less complex bifunctional catalysts by simply and inherently tuning the influential material properties for full-cell electrochemical water splitting.

19.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35564208

RESUMEN

Here, a highly sensitive triboelectric bending sensor in non-contact mode operation, less sensitive to strain, is demonstrated by designing multiple triangular prisms at both sides of the polydimethylsiloxane film. The sensor can detect bending in a strained condition (up to 20%) as well as bending direction with quite high linear sensitivity (~0.12/degree) up to 120°, due to the electrostatic induction effect between Al and poly (glycerol sebacate) methacrylate. Further increase of the bending angle to 135° significantly increases the sensitivity to 0.16/degree, due to the contact electrification between them. The sensors are attached on the top and bottom side of the proximal interphalangeal and wrist, demonstrating a directional bending sensor with an enhanced sensitivity.

20.
RSC Adv ; 11(38): 23221-23227, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479777

RESUMEN

The timely biochemical detection of environmental pollutants or infectious disease is a predominant challenge for global health and people living in remote areas. However, the energy supply is still difficult for both the pretreatment and test steps, especially for diagnostics in resource-limited environments or outdoor point-of-care testing. Herein, we demonstrate a hand-powered triboelectric nanogenerator (TENG) system, which can simultaneously accomplish centrifugal pretreatment and analysis without an additional power supply. The complete separation of plasma from red blood cells can be achieved within 1.5 min at an operation frequency of 1 Hz. Besides, according to the impressive high rotational speed of 7500 rpm, the rotating mechanical energy can be efficiently recycled by the TENG to power different electronic devices, such as an electronic watch or thermometer. As a demonstration, the pretreatment of lake water and the detection of hydrogen peroxide contained in it has been realized. The combination of the system with different types of sensors will further promote its applications in multifarious biochemical detections. Moreover, this TENG system is effective, field-portable and ultra-low cost, and is promising for battery-free point-of-care diagnostic systems for outdoor or harsh environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA