Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 14(5): e1007043, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29772025

RESUMEN

Trypanosomatids such as Leishmania and Trypanosoma are digenetic, single-celled, parasitic flagellates that undergo complex life cycles involving morphological and metabolic changes to fit them for survival in different environments within their mammalian and insect hosts. According to current consensus, asymmetric division enables trypanosomatids to achieve the major morphological rearrangements associated with transition between developmental stages. Contrary to this view, here we show that the African trypanosome Trypanosoma congolense, an important livestock pathogen, undergoes extensive cell remodelling, involving shortening of the cell body and flagellum, during its transition from free-swimming proventricular forms to attached epimastigotes in vitro. Shortening of the flagellum was associated with accumulation of PFR1, a major constituent of the paraflagellar rod, in the mid-region of the flagellum where it was attached to the substrate. However, the PFR1 depot was not essential for attachment, as it accumulated several hours after initial attachment of proventricular trypanosomes. Detergent and CaCl2 treatment failed to dislodge attached parasites, demonstrating the robust nature of flagellar attachment to the substrate; the PFR1 depot was also unaffected by these treatments. Division of the remodelled proventricular trypanosome was asymmetric, producing a small daughter cell. Each mother cell went on to produce at least one more daughter cell, while the daughter trypanosomes also proliferated, eventually resulting in a dense culture of epimastigotes. Here, by observing the synchronous development of the homogeneous population of trypanosomes in the tsetse proventriculus, we have been able to examine the transition from proventricular forms to attached epimastigotes in detail in T. congolense. This transition is difficult to observe in vivo as it happens inside the mouthparts of the tsetse fly. In T. brucei, this transition is achieved by asymmetric division of long trypomastigotes in the proventriculus, yielding short epimastigotes, which go on to colonise the salivary glands. Thus, despite their close evolutionary relationship and shared developmental route within the vector, T. brucei and T. congolense have evolved different ways of accomplishing the same developmental transition from proventricular form to attached epimastigote.


Asunto(s)
Trypanosoma/crecimiento & desarrollo , Trypanosoma/fisiología , Animales , División Celular/fisiología , Culicidae/parasitología , Sistema Digestivo/microbiología , Vectores de Enfermedades , Flagelos/metabolismo , Flagelos/fisiología , Estadios del Ciclo de Vida/fisiología , Glándulas Salivales/parasitología , Trypanosoma/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/patogenicidad , Trypanosoma brucei brucei/fisiología , Trypanosoma congolense/crecimiento & desarrollo , Trypanosoma congolense/patogenicidad , Trypanosoma congolense/fisiología , Moscas Tse-Tse/parasitología
2.
PLoS Pathog ; 14(5): e1007017, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29772011

RESUMEN

There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Sistema Respiratorio/inmunología , Aerosoles , Secuencia de Aminoácidos , Animales , Antígenos Virales/química , Epítopos/química , Epítopos/genética , Femenino , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Endogamia , Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/transmisión , Masculino , Modelos Animales , Modelos Moleculares , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/genética , Sus scrofa/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunación/métodos , Vacunación/veterinaria
3.
Immunol Cell Biol ; 95(1): 68-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27670790

RESUMEN

The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity.


Asunto(s)
Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Membrana Celular/metabolismo , Humanos , Activación de Linfocitos/inmunología , Mutación/genética , Péptidos/metabolismo
4.
Vet Res ; 47(1): 103, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27765064

RESUMEN

Influenza virus infection in pigs is a major farming problem, causing considerable economic loss and posing a zoonotic threat. In addition the pig is an excellent model for understanding immunity to influenza viruses as this is a natural host pathogen system. Experimentally, influenza virus is delivered to pigs intra-nasally, by intra-tracheal instillation or by aerosol, but there is little data comparing the outcome of different methods. We evaluated the shedding pattern, cytokine responses in nasal swabs and immune responses following delivery of low or high dose swine influenza pdmH1N1 virus to the respiratory tract of pigs intra-nasally or by aerosol and compared them to those induced in naturally infected contact pigs. Our data shows that natural infection by contact induces remarkably high innate and adaptive immune response, although the animals were exposed to a very low virus dose. In contacts, the kinetics of virus shedding were slow and prolonged and more similar to the low dose directly infected animals. In contrast the cytokine profile in nasal swabs, antibody and cellular immune responses of contacts more closely resemble immune responses in high dose directly inoculated animals. Consideration of these differences is important for studies of disease pathogenesis and assessment of vaccine protective efficacy.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Administración Intranasal , Aerosoles , Animales , Citocinas/metabolismo , Femenino , Citometría de Flujo/veterinaria , Exposición por Inhalación , Pulmón/patología , Cavidad Nasal/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Esparcimiento de Virus
5.
Blood ; 121(7): 1112-23, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23255554

RESUMEN

αß-TCRs expressed at the CD8(+) T-cell surface interact with short peptide fragments (p) bound to MHC class I molecules (pMHCI). The TCR/pMHCI interaction is pivotal in all aspects of CD8(+) T-cell immunity. However, the rules that govern the outcome of TCR/pMHCI engagement are not entirely understood, and this is a major barrier to understanding the requirements for both effective immunity and vaccination. In the present study, we discovered an unexpected feature of the TCR/pMHCI interaction by showing that any given TCR exhibits an explicit preference for a single MHCI-peptide length. Agonists of nonpreferred length were extremely rare, suboptimal, and often entirely distinct in sequence. Structural analysis indicated that alterations in peptide length have a major impact on antigenic complexity, to which individual TCRs are unable to adapt. This novel finding demonstrates that the outcome of TCR/pMHCI engagement is determined by peptide length in addition to the sequence identity of the MHCI-bound peptide. Accordingly, the effective recognition of pMHCI Ag, which is a prerequisite for successful CD8(+) T-cell immunity and protective vaccination, can only be achieved by length-matched Ag-specific CD8(+) T-cell clonotypes.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Secuencia de Aminoácidos , Presentación de Antígeno , Antígenos/química , Antígenos/genética , Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Clonales , Humanos , Inmunidad Celular , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/inmunología , Fragmentos de Péptidos/genética , Biblioteca de Péptidos
6.
Proc Natl Acad Sci U S A ; 108(9): 3671-6, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321215

RESUMEN

Elucidating the mechanism of genetic exchange is fundamental for understanding how genes for such traits as virulence, disease phenotype, and drug resistance are transferred between pathogen strains. Genetic exchange occurs in the parasitic protists Trypanosoma brucei, T. cruzi, and Leishmania major, but the precise cellular mechanisms are unknown, because the process has not been observed directly. Here we exploit the identification of homologs of meiotic genes in the T. brucei genome and demonstrate that three functionally distinct, meiosis-specific proteins are expressed in the nucleus of a single specific cell type, defining a previously undescribed developmental stage occurring within the tsetse fly salivary gland. Expression occurs in clonal and mixed infections, indicating that the meiotic program is an intrinsic but hitherto cryptic part of the developmental cycle of trypanosomes. In experimental crosses, expression of meiosis-specific proteins usually occurred before cell fusion. This is evidence of conventional meiotic division in an excavate protist, and the functional conservation of the meiotic machinery in these divergent organisms underlines the ubiquity and basal evolution of meiosis in eukaryotes.


Asunto(s)
Estadios del Ciclo de Vida , Meiosis , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/crecimiento & desarrollo , Moscas Tse-Tse/parasitología , Animales , Fusión Celular , Células Clonales , Cruzamientos Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Haploidia , Masculino , Meiosis/genética , Modelos Biológicos , Homología de Secuencia de Ácido Nucleico , Transfección , Trypanosoma brucei brucei/genética
7.
Gut ; 62(6): 842-51, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22661492

RESUMEN

BACKGROUND: The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals. OBJECTIVE: To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period. DESIGN: Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks). RESULTS: Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation. CONCLUSION: The correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.


Asunto(s)
Bifidobacterium , Dieta , Mucosa Intestinal/inmunología , Metaboloma , Probióticos/administración & dosificación , Destete , Fenómenos Fisiológicos Nutricionales de los Animales/inmunología , Animales , Huevos , Inmunoglobulina A/sangre , Inmunoglobulina M/sangre , Mucosa Intestinal/efectos de los fármacos , Intestinos/microbiología , Espectroscopía de Resonancia Magnética , Fenotipo , Glycine max , Porcinos
8.
Parasit Vectors ; 17(1): 4, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178172

RESUMEN

BACKGROUND: In tropical Africa animal trypanosomiasis is a disease that has severe impacts on the health and productivity of livestock in tsetse fly-infested regions. Trypanosoma congolense savannah (TCS) is one of the main causative agents and is widely distributed across the sub-Saharan tsetse belt. Population genetics analysis has shown that TCS is genetically heterogeneous and there is evidence for genetic exchange, but to date Trypanosoma brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, with meiosis and production of haploid gametes. In T. brucei sex occurs in the fly salivary glands, so by analogy, sex in TCS should occur in the proboscis, where the corresponding portion of the developmental cycle takes place. Here we test this prediction using genetically modified red and green fluorescent clones of TCS. METHODS: Three fly-transmissible strains of TCS were transfected with genes for red or green fluorescent protein, linked to a gene for resistance to the antibiotic hygromycin, and experimental crosses were set up by co-transmitting red and green fluorescent lines in different combinations via tsetse flies, Glossina pallidipes. To test whether sex occurred in vitro, co-cultures of attached epimastigotes of one red and one green fluorescent TCS strain were set up and sampled at intervals for 28 days. RESULTS: All interclonal crosses of genetically modified trypanosomes produced hybrids containing both red and green fluorescent proteins, but yellow fluorescent hybrids were only present among trypanosomes from the fly proboscis, not from the midgut or proventriculus. It was not possible to identify the precise life cycle stage that undergoes mating, but it is probably attached epimastigotes in the food canal of the proboscis. Yellow hybrids were seen as early as 14 days post-infection. One intraclonal cross in tsetse and in vitro co-cultures of epimastigotes also produced yellow hybrids in small numbers. The hybrid nature of the yellow fluorescent trypanosomes observed was not confirmed by genetic analysis. CONCLUSIONS: Despite absence of genetic characterisation of hybrid trypanosomes, the fact that these were produced only in the proboscis and in several independent crosses suggests that they are products of mating rather than cell fusion. The three-way strain compatibility observed is similar to that demonstrated previously for T. brucei, indicating that a simple two mating type system does not apply for either trypanosome species.


Asunto(s)
Trypanosoma congolense , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Moscas Tse-Tse/genética , Trypanosoma congolense/genética , Ganado , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Africana/epidemiología , Meiosis , Tracto Gastrointestinal , Cruzamientos Genéticos
9.
Microbes Infect ; 26(5-6): 105346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670217

RESUMEN

Vaccine adjuvants, such as liposome-based cationic adjuvant formulations (CAFs), are able to boost immune responses and, by incorporation of distinct immunomodulators, steer immunity towards a desired direction in mice, non-human primates and humans, while less studied in pigs. Here we used commercial pigs to investigate polarizing adjuvant effects of CAFs with immunomodulators: C-type lectin receptor ligands trehalose-6,6'-dibehenate and monomycolyl glycerol, toll-like receptor 3 ligand Poly(I:C) or retinoic acid. Vaccines were formulated with a recombinant Chlamydia model protein antigen and administered via three injection routes. All adjuvants significantly increased antigen-specific IgG in serum, compared to non-adjuvanted antigen. Administering the vaccines through intramuscular and intraperitoneal routes induced significantly higher antigen-specific IgG and IgA serum antibodies, than the perirectal route. Although immunizations triggered cell-mediated immunity, no significant differences between adjuvants or injection sites were detected. Genes depicting T cell subtypes revealed only minor differences. Our findings suggest that specific signatures of the tested adjuvant immunomodulation do not translate well from mice to pigs in standard two-dose immunizations. This study provides new insights into immune responses to CAFs in pigs, and highlights that adjuvant development should ideally be carried out in the intended species of interest or in models with high predictive validity/translational value.


Asunto(s)
Adyuvantes Inmunológicos , Inmunoglobulina G , Liposomas , Animales , Liposomas/inmunología , Liposomas/administración & dosificación , Porcinos , Adyuvantes Inmunológicos/administración & dosificación , Inmunoglobulina G/sangre , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Anticuerpos Antibacterianos/sangre , Adyuvantes de Vacunas/administración & dosificación , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Poli I-C/administración & dosificación , Poli I-C/inmunología , Chlamydia/inmunología , Tretinoina/administración & dosificación , Tretinoina/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/administración & dosificación , Agentes Inmunomoduladores/administración & dosificación , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/inmunología , Inmunidad Celular , Glucolípidos
10.
PLoS Pathog ; 7(12): e1002402, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22144895

RESUMEN

Prion diseases are characterised by the accumulation of PrP(Sc), an abnormally folded isoform of the cellular prion protein (PrP(C)), in affected tissues. Following peripheral exposure high levels of prion-specific PrP(Sc) accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrP(C) is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrP(C) expression was specifically "switched on" or "off" only on FDC. We show that PrP(C)-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrP(C)-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrP(C) expression on FDC.


Asunto(s)
Células Dendríticas Foliculares/metabolismo , Regulación de la Expresión Génica , Proteínas PrPC/biosíntesis , Proteínas PrPC/patogenicidad , Enfermedades por Prión/metabolismo , Bazo/metabolismo , Animales , Células Dendríticas Foliculares/patología , Ratones , Ratones Noqueados , Proteínas PrPC/genética , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Bazo/patología
11.
Br J Nutr ; 110(7): 1243-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23473077

RESUMEN

Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in a reduction in IgA (P<0·0005) and IgM (P<0·009) production by mucosal tissues but had no effect on IgG production (P>0·05). Probiotic-supplemented pigs had more mast cells than unsupplemented littermates (P<0·0001), although numbers in both groups were low. In addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P<0·05). The present findings are consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic supplementation on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes of nutritional intervention.


Asunto(s)
Bifidobacterium , Sistema Inmunológico/crecimiento & desarrollo , Inmunoglobulinas/metabolismo , Mucosa Intestinal/metabolismo , Tejido Linfoide/metabolismo , Probióticos , Destete , Animales , Animales Recién Nacidos , Antígenos , Modelos Animales de Enfermedad , Sistema Inmunológico/microbiología , Inmunoglobulina A/biosíntesis , Inmunoglobulina G/metabolismo , Inmunoglobulina M/biosíntesis , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Tejido Linfoide/inmunología , Mastocitos/metabolismo , Permeabilidad , Valores de Referencia , Porcinos
12.
Parasit Vectors ; 16(1): 231, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434196

RESUMEN

BACKGROUND: Tsetse-transmitted African animal trypanosomiasis is recognised as an important disease of ruminant livestock in sub-Saharan Africa, but also affects domestic pigs, with Trypanosoma simiae notable as a virulent suid pathogen that can rapidly cause death. Trypanosoma simiae is widespread in tsetse-infested regions, but its biology has been little studied compared to T. brucei and T. congolense. METHODS: Trypanosoma simiae procyclics were cultured in vitro and transfected using protocols developed for T. brucei. Genetically modified lines, as well as wild-type trypanosomes, were transmitted through tsetse flies, Glossina pallidipes, to study T. simiae development in the tsetse midgut, proventriculus and proboscis. The development of proventricular trypanosomes was also studied in vitro. Image and mensural data were collected and analysed. RESULTS: A PFR1::YFP line successfully completed development in tsetse, but a YFP::HOP1 line failed to progress beyond midgut infection. Analysis of image and mensural data confirmed that the vector developmental cycles of T. simiae and T. congolense are closely similar, but we also found putative sexual stages in T. simiae, as judged by morphological similarity to these stages in T. brucei. Putative meiotic dividers were abundant among T. simiae trypanosomes in the proboscis, characterised by a large posterior nucleus and two anterior kinetoplasts. Putative gametes and other meiotic intermediates were also identified by characteristic morphology. In vitro development of proventricular forms of T. simiae followed the pattern previously observed for T. congolense: long proventricular trypanosomes rapidly attached to the substrate and shortened markedly before commencing cell division. CONCLUSIONS: To date, T. brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, which occurs in the fly salivary glands. By analogy, sexual stages of T. simiae or T. congolense are predicted to occur in the proboscis, where the corresponding portion of the developmental cycle takes place. While no such stages have been observed in T. congolense, for T. simiae putative sexual stages were abundant in the tsetse proboscis. Although our initial attempt to demonstrate expression of a YFP-tagged, meiosis-specific protein was unsuccessful, the future application of transgenic approaches will facilitate the identification of meiotic stages and hybrids in T. simiae.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Porcinos , Ganado , Trypanosoma/genética , Tripanosomiasis Africana/veterinaria , Meiosis
13.
Commun Med (Lond) ; 3(1): 37, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922542

RESUMEN

BACKGROUND: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS: We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS: Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.


If a person has been previously infected with SARS-CoV-2 they will produce specific proteins, called antibodies. These are present in the saliva and blood. Saliva is easier to obtain than blood, so we developed and evaluated six tests that detect SARS-CoV-2 antibodies in saliva in children and adults. Some tests detected antibodies to a particular protein made by SARS-CoV-2 called the spike protein, and these tests worked best. The most accurate results were obtained by using a combination of tests. Similar tests could also be developed to detect other respiratory infections which will enable easier identification of infected individuals.

14.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38075238

RESUMEN

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

15.
Immunol Cell Biol ; 90(2): 235-42, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21556017

RESUMEN

The current view of lymphocyte migration states that naïve lymphocytes re-circulate between the blood and the lymph via the lymph nodes, but are not able to access non-lymphoid tissues. We examined B lymphocytes in peripheral tissues and found that the majority were phenotypically similar to naïve B cells in lymphoid tissues and were located within the parenchyma, not associated with blood vessels. The mutation rate within the Vh region of these cells was substantially less than the rate attributed to somatic hypermutation and was identical to that observed in naïve B cells isolated from the lymph nodes, showing the presence of naïve B cells in the non-lymphoid organs. Further, using FTY720-treated mice, we showed that naïve B cells migrate through the peripheral tissues and, using pertussis toxin, that the entry of B cells was not controlled by chemokine-mediated signalling events. Overall, these results show that naïve B lymphocytes constitute the majority of the total B-cell population in non-lymphoid tissues and suggest that these cells may re-circulate through the periphery as part of their normal migration pathway. This has implications for the current view of the role of naïve B cells in priming and tolerance.


Asunto(s)
Linfocitos B/inmunología , Memoria Inmunológica/inmunología , Hígado/inmunología , Pulmón/inmunología , Células Precursoras de Linfocitos B/inmunología , Animales , Línea Celular , Movimiento Celular , Quimiocinas/metabolismo , Femenino , Región Variable de Inmunoglobulina/genética , Ganglios Linfáticos/inmunología , Tejido Linfoide/inmunología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Toxina del Pertussis/inmunología , Fenotipo , Células Precursoras de Linfocitos B/metabolismo , Análisis de Secuencia de ADN , Bazo/inmunología
16.
Mucosal Immunol ; 15(3): 428-442, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35145208

RESUMEN

For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Linfocitos T CD8-positivos , Epítopos , Humanos , Memoria Inmunológica , Células T de Memoria , Simulación de Dinámica Molecular , Porcinos
17.
Front Immunol ; 13: 968317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439154

RESUMEN

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Proteínas del Envoltorio Viral , Estudios Seroepidemiológicos , COVID-19/diagnóstico , Glicoproteínas de Membrana
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200272, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34053261

RESUMEN

An outbreak of a novel coronavirus was first reported in China on 31 December 2019. As of 9 February 2020, cases have been reported in 25 countries, including probable human-to-human transmission in England. We adapted an existing national-scale metapopulation model to capture the spread of COVID-19 in England and Wales. We used 2011 census data to inform population sizes and movements, together with parameter estimates from the outbreak in China. We predict that the epidemic will peak 126 to 147 days (approx. 4 months) after the start of person-to-person transmission in the absence of controls. Assuming biological parameters remain unchanged and transmission persists from February, we expect the peak to occur in June. Starting location and model stochasticity have a minimal impact on peak timing. However, realistic parameter uncertainty leads to peak time estimates ranging from 78 to 241 days following sustained transmission. Seasonal changes in transmission rate can substantially impact the timing and size of the epidemic. We provide initial estimates of the epidemic potential of COVID-19. These results can be refined with more precise parameters. Seasonal changes in transmission could shift the timing of the peak into winter, with important implications for healthcare capacity planning. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK.


Asunto(s)
COVID-19/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Pandemias , SARS-CoV-2/patogenicidad , COVID-19/transmisión , COVID-19/virología , China/epidemiología , Inglaterra/epidemiología , Humanos , Gales/epidemiología
19.
Commun Biol ; 4(1): 555, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976359

RESUMEN

Meiosis is a core feature of eukaryotes that occurs in all major groups, including the early diverging excavates. In this group, meiosis and production of haploid gametes have been described in the pathogenic protist, Trypanosoma brucei, and mating occurs in the salivary glands of the insect vector, the tsetse fly. Here, we searched for intermediate meiotic stages among trypanosomes from tsetse salivary glands. Many different cell types were recovered, including trypanosomes in Meiosis I and gametes. Significantly, we found trypanosomes containing three nuclei with a 1:2:1 ratio of DNA contents. Some of these cells were undergoing cytokinesis, yielding a mononucleate gamete and a binucleate cell with a nuclear DNA content ratio of 1:2. This cell subsequently produced three more gametes in two further rounds of division. Expression of the cell fusion protein HAP2 (GCS1) was not confined to gametes, but also extended to meiotic intermediates. We propose a model whereby the two nuclei resulting from Meiosis I undergo asynchronous Meiosis II divisions with sequential production of haploid gametes.


Asunto(s)
Células Germinativas/metabolismo , Reproducción/fisiología , Trypanosoma/genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN/genética , Células Germinativas/fisiología , Meiosis/genética , Meiosis/fisiología , Trypanosoma/metabolismo , Trypanosoma/fisiología , Moscas Tse-Tse/genética
20.
Cell Rep Med ; 2(7): 100327, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34124701

RESUMEN

Severe COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in 4 infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19. Although not statistically significant, compared to seropositive adults, infants have high serum levels of IgG and IgA to SARS-CoV-2 spike protein, with a corresponding functional ability to block SARS-CoV-2 cellular entry. Infants also exhibit robust saliva anti-spike IgG and IgA responses. Spike-specific IFN-γ production by infant peripheral blood mononuclear cells appears restrained, but the frequency of spike-specific IFN-γ- and/or TNF-α-producing T cells is comparable between infants and adults. On principal-component analysis, infant immune responses appear distinct from their parents. Robust functional antibody responses alongside restrained IFN-γ production may help protect infants from severe COVID-19.


Asunto(s)
Formación de Anticuerpos , COVID-19/inmunología , Interferón gamma/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Femenino , Humanos , Inmunoglobulina A , Inmunoglobulina G , Lactante , Recién Nacido , Interferón gamma/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA