Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Immunol ; 212(2): 284-294, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37991420

RESUMEN

There is considerable interest in therapeutically engaging human γδ T cells. However, due to the unique TCRs of human γδ T cells, studies from animal models have provided limited directly applicable insights, and human γδ T cells from key immunological tissues remain poorly characterized. In this study, we investigated γδ T cells from human spleen tissue. Compared to blood, where Vδ2+Vγ9+ T cells are the dominant subset, splenic γδ T cells included a variety of TCR types, with Vδ1+ T cells typically being the most frequent. Intracellular cytokine staining revealed that IFN-γ was produced by a substantial fraction of splenic γδ T cells, IL-17A by a small fraction, and IL-4 was minimal. Primary splenic γδ T cells frequently expressed NKG2D (NK group 2 member D) and CD16, whereas expression of DNAM-1 (DNAX accessory molecule 1), CD28, PD-1, TIGIT, and CD94 varied according to subset, and there was generally little expression of natural cytotoxicity receptors, TIM-3, LAG-3, or killer Ig-like receptors. In vitro expansion was associated with marked changes in expression of these activating and inhibitory receptors. Analysis of functional responses of spleen-derived Vδ2+Vγ9+, Vδ1+Vγ9+, and Vδ1+Vγ9- T cell lines to recombinant butyrophilin BTN2A1 and BTN3A1 demonstrated that both Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells were capable of responding to the extracellular domain of BTN2A1, whereas the addition of BTN3A1 only markedly enhanced the responses of Vδ2+Vγ9+ T cells. Conversely, Vδ1+Vγ9+ T cells appeared more responsive than Vδ2+Vγ9+ T cells to TCR-independent NKG2D stimulation. Thus, despite shared recognition of BTN2A1, differential effects of BTN3A1 and coreceptors may segregate target cell responses of Vδ2+Vγ9+ and Vδ1+Vγ9+ T cells.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Bazo , Animales , Humanos , Bazo/metabolismo , Butirofilinas , Subfamilia K de Receptores Similares a Lectina de Células NK , Linfocitos T , Antígenos CD
2.
Immunology ; 172(4): 627-640, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736328

RESUMEN

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.


Asunto(s)
Antígenos CD1d , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Inmunoterapia Adoptiva , Linfoma de Células B , Células T Asesinas Naturales , Antígenos CD1d/metabolismo , Antígenos CD1d/inmunología , Humanos , Animales , Células T Asesinas Naturales/inmunología , Inmunoterapia Adoptiva/métodos , Herpesvirus Humano 4/inmunología , Linfoma de Células B/inmunología , Linfoma de Células B/terapia , Ratones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Ratones SCID , Ratones Endogámicos NOD
3.
PLoS Pathog ; 18(4): e1010453, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35472072

RESUMEN

Humans are infected with two types of EBV (Type 1 (T1) and Type 2 (T2)) that differ substantially in their EBNA2 and EBNA 3A/B/C latency proteins and have different phenotypes in B cells. T1 EBV transforms B cells more efficiently than T2 EBV in vitro, and T2 EBV-infected B cells are more lytic. We previously showed that both increased NFATc1/c2 activity, and an NFAT-binding motif within the BZLF1 immediate-early promoter variant (Zp-V3) contained in all T2 strains, contribute to lytic infection in T2 EBV-infected B cells. Here we compare cellular and viral gene expression in early-passage lymphoblastoid cell lines (LCLs) infected with either T1 or T2 EBV strains. Using bulk RNA-seq, we show that T2 LCLs are readily distinguishable from T1 LCLs, with approximately 600 differentially expressed cellular genes. Gene Set Enrichment Analysis (GSEA) suggests that T2 LCLs have increased B-cell receptor (BCR) signaling, NFAT activation, and enhanced expression of epithelial-mesenchymal-transition-associated genes. T2 LCLs also have decreased RNA and protein expression of a cellular gene required for survival of T1 LCLs, IRF4. In addition to its essential role in plasma cell differentiation, IRF4 decreases BCR signaling. Knock-down of IRF4 in a T1 LCL (infected with the Zp-V3-containing Akata strain) induced lytic reactivation whereas over-expression of IRF4 in Burkitt lymphoma cells inhibited both NFATc1 and NFATc2 expression and lytic EBV reactivation. Single-cell RNA-seq confirmed that T2 LCLs have many more lytic cells compared to T1 LCLs and showed that lytically infected cells have both increased NFATc1, and decreased IRF4, compared to latently infected cells. These studies reveal numerous differences in cellular gene expression in B cells infected with T1 versus T2 EBV and suggest that decreased IRF4 contributes to both the latent and lytic phenotypes in cells with T2 EBV.


Asunto(s)
Linfocitos B , Linfoma de Burkitt , Herpesvirus Humano 4 , Factores Reguladores del Interferón , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Linfoma de Burkitt/virología , Herpesvirus Humano 4/metabolismo , Humanos , Factores Reguladores del Interferón/metabolismo , Fenotipo , Proteínas Virales/metabolismo
4.
PLoS Pathog ; 16(2): e1008365, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32059024

RESUMEN

Humans are infected with two distinct strains (Type 1 (T1) and Type 2 (T2)) of Epstein-Barr virus (EBV) that differ substantially in their EBNA2 and EBNA 3A/B/C latency genes and the ability to transform B cells in vitro. While most T1 EBV strains contain the "prototype" form of the BZLF1 immediate-early promoter ("Zp-P"), all T2 strains contain the "Zp-V3" variant, which contains an NFAT binding motif and is activated much more strongly by B-cell receptor signalling. Whether B cells infected with T2 EBV are more lytic than cells infected with T1 EBV is unknown. Here we show that B cells infected with T2 EBV strains (AG876 and BL5) have much more lytic protein expression compared to B cells infected with T1 EBV strains (M81, Akata, and Mutu) in both a cord blood-humanized (CBH) mouse model and EBV-transformed lymphoblastoid cell lines (LCLs). Although T2 LCLs grow more slowly than T1 LCLs, both EBV types induce B-cell lymphomas in CBH mice. T1 EBV strains (M81 and Akata) containing Zp-V3 are less lytic than T2 EBV strains, suggesting that Zp-V3 is not sufficient to confer a lytic phenotype. Instead, we find that T2 LCLs express much higher levels of activated NFATc1 and NFATc2, and that cyclosporine (an NFAT inhibitor) and knockdown of NFATc2 attenuate constitutive lytic infection in T2 LCLs. Both NFATc1 and NFATc2 induce lytic EBV gene expression when combined with activated CAMKIV (which is activated by calcium signaling and activates MEF2D) in Burkitt Akata cells. Together, these results suggest that B cells infected with T2 EBV are more lytic due to increased activity of the cellular NFATc1/c2 transcription factors in addition to the universal presence of the Zp-V3 form of BZLF1 promoter.


Asunto(s)
Linfocitos B/metabolismo , Factores de Transcripción NFATC/genética , Animales , Linfocitos B/virología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr , Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidad , Humanos , Ratones , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/metabolismo , Activación Viral , Latencia del Virus
5.
J Nucl Med ; 60(10): 1414-1420, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30926646

RESUMEN

Cancer is the second leading cause of death for children between the ages of 5 and 14 y. For children diagnosed with metastatic or recurrent solid tumors, for which the utility of external-beam radiotherapy is limited, the prognosis is particularly poor. The availability of tumor-targeting radiopharmaceuticals for molecular radiotherapy (MRT) has demonstrated improved outcomes in these patient populations, but options are nonexistent or limited for most pediatric solid tumors. 18-(p-iodophenyl)octadecylphosphocholine (CLR1404) is a novel antitumor alkyl phospholipid ether analog that broadly targets cancer cells. In this study, we evaluated the in vivo pharmacokinetics of 124I-CLR1404 (CLR 124) and estimated theranostic dosimetry for 131I-CLR1404 (CLR 131) MRT in murine xenograft models of the pediatric solid tumors neuroblastoma, rhabdomyosarcoma, and Ewing sarcoma. Methods: Tumor-bearing mice were imaged with small-animal PET/CT to evaluate the whole-body distribution of CLR 124 and, correcting for differences in radioactive decay, predict that of CLR 131. Image volumes representing CLR 131 provided input for Geant4 Monte Carlo simulations to calculate subject-specific tumor dosimetry for CLR 131 MRT. Pharmacokinetics for CLR 131 were extrapolated to adult and pediatric humans to estimate normal-tissue dosimetry. In neuroblastoma, a direct comparison of CLR 124 with 124I-metaiodobenzylguanidine (124I-MIBG) in an MIBG-avid model was performed. Results: In vivo pharmacokinetics of CLR 124 showed selective uptake and prolonged retention across all pediatric solid tumor models investigated. Subject-specific tumor dosimetry for CLR 131 MRT presents a correlative relationship with tumor-growth delay after CLR 131 MRT. Peak uptake of CLR 124 was, on average, 22% higher than that of 124I-MIBG in an MIBG-avid neuroblastoma model. Conclusion: CLR1404 is a suitable theranostic scaffold for dosimetry and therapy with potentially broad applicability in pediatric oncology. Given the ongoing clinical trials for CLR 131 in adults, these data support the development of pediatric clinical trials and provide detailed dosimetry that may lead to improved MRT treatment planning.


Asunto(s)
Radioisótopos de Yodo/farmacología , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , 3-Yodobencilguanidina/farmacología , Animales , Línea Celular Tumoral , Niño , Simulación por Computador , Modelos Animales de Enfermedad , Humanos , Yodobencenos/farmacología , Ratones , Ratones Endogámicos NOD , Método de Montecarlo , Recurrencia Local de Neoplasia , Trasplante de Neoplasias , Éteres Fosfolípidos/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Pronóstico , Radiometría , Radiofármacos , Nanomedicina Teranóstica
6.
J Nucl Med ; 59(2): 244-250, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28747518

RESUMEN

External-beam radiotherapy plays a critical role in the treatment of most pediatric solid tumors. Particularly in children, achieving an optimal therapeutic index to avoid damage to normal tissue is extremely important. Consequently, in metastatic disease, the utility of external-beam radiotherapy is limited. Molecular radiotherapy with tumor-targeted radionuclides may overcome some of these challenges, but to date there exists no single cancer-selective agent capable of treating various pediatric malignancies independently of their histopathologic origin. We tested the therapeutic potential of the clinical-grade alkyl-phospholipid ether analog CLR1404, 18-(p-iodophenyl)octadecyl phosphocholine, as a scaffold for tumor-targeted radiotherapy of pediatric malignancies. Methods: Uptake of CLR1404 by pediatric solid tumor cells was tested in vitro by flow cytometry and in vivo by PET/CT imaging and dosimetry. The therapeutic potential of 131I-CLR1404 was evaluated in xenograft models. Results: In vitro, fluorescent CLR1404-BODIPY showed significant selective uptake in a variety of pediatric cancer lines compared with normal controls. In vivo tumor-targeted uptake in mouse xenograft models using 124I-CLR1404 was confirmed by imaging. Single-dose intravenous injection of 131I-CLR1404 significantly delayed tumor growth in all rodent pediatric xenograft models and extended animal survival while demonstrating a favorable side effect profile. Conclusion:131I-CLR1404 has the potential to become a tumor-targeted radiotherapeutic drug with broad applicability in pediatric oncology. Because 131I-CLR1404 has entered clinical trials in adults, our data warrant the development of pediatric clinical trials for this particularly vulnerable patient population.


Asunto(s)
Yodobencenos/química , Yodobencenos/uso terapéutico , Neoplasias/radioterapia , Éteres Fosfolípidos/química , Éteres Fosfolípidos/uso terapéutico , Alquilación , Animales , Transporte Biológico , Línea Celular Tumoral , Transformación Celular Neoplásica , Niño , Humanos , Yodobencenos/metabolismo , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/patología , Éteres Fosfolípidos/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Análisis de Supervivencia
7.
Mol Cancer Ther ; 17(11): 2320-2328, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30108133

RESUMEN

Antitumor alkyl phospholipid (APL) analogs comprise a group of structurally related molecules with remarkable tumor selectivity. Some of these compounds have shown radiosensitizing capabilities. CLR127 is a novel, clinical-grade antitumor APL ether analog, a subtype of synthetic APL broadly targeting cancer cells with limited uptake in normal tissues. The purpose of this study was to investigate the effect of CLR127 to modulate radiation response across several adult and pediatric cancer types in vitro as well as in murine xenograft models of human prostate adenocarcinoma, neuroblastoma, Ewing sarcoma, and rhabdomyosarcoma. In vitro, CLR127 demonstrated selective uptake in cancer cells compared to normal cells. In cancer cells, CLR127 treatment prior to radiation significantly decreased clonogenic survival in vitro, and led to increased radiation-induced double-stranded DNA (dsDNA) breakage compared with radiation alone, which was not observed in normal controls. In animal models, CLR127 effectively increased the antitumor response to fractionated radiotherapy and led to delayed tumor regrowth at potentially clinically achievable doses. In conclusion, our study highlights the ability of CLR127 to increase radiation response in several cancer types. Given almost universal uptake of CLR127 in malignant cells, future research should test whether the observed effects can be extended to other tumor types. Our data provide a strong rationale for clinical testing of CLR127 as a tumor-targeted radiosensitizing agent. Mol Cancer Ther; 17(11); 2320-8. ©2018 AACR.


Asunto(s)
Neoplasias/patología , Éteres Fosfolípidos/farmacología , Tolerancia a Radiación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Clonales , Daño del ADN , Histonas/metabolismo , Humanos , Ratones Desnudos , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Am J Cancer Res ; 5(11): 3422-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26807322

RESUMEN

Neuroblastoma (NB) is the most common extracranial solid tumor in children and is associated with high mortality in advanced stages. Survivors suffer from long-term treatment-related sequelae. Thus, new targeted treatment options are urgently needed. 18-(p-[(127)I] iodophenyl) octadecyl phosphocholine (CLR1404) is a novel, broadly tumor targeted small molecule drug suitable for intravenous injection with highly selective tumor uptake. As a carrier molecule for radioactive iodine, CLR1404 is in clinical trials as cancer imaging agent and radiotherapeutic drug. Chemically, CLR1404 belongs to the anti-tumor alkyl phospholipids, a class of drugs known to have intrinsic cytotoxic effects on cancer cells. Therefore, we hypothesized that CLR1404 could be a tumor-targeted anti-cancer agent for neuroblastoma, and investigated its effect in vitro and in vivo. CLR1404 was taken up by NB cells in a highly tumor-selective manner both in vitro and in vivo, confirmed by flow cytometry and PET/CT imaging of mouse flank xenografts with (124)I-CLR1404, respectively. Using flow cytometry, MTT assay, Western blotting and caspase 3/7 assay, we confirm that in vitro treatment with CLR1404 leads to robust apoptosis and cell death in multiple NB cell lines and is associated with Akt inhibition, while sparing normal cells. Treatment with CLR1404 in doses of 10 or 30 mg/kg administered by intravenous injection once weekly for 7 weeks significantly inhibited the tumor growth rate in a mouse flank xenograft model of NB (P<0.001) when compared to control cohorts, without causing drug-related hematotoxicity or other noticeable adverse effects, which was determined by serial tumor volume measurements, complete blood counts, and monitoring of animal-specific health parameters. We conclude that CLR1404 warrants clinical exploration as a novel, tumor selective anticancer agent in NB and potentially other cancers.

10.
Nanomedicine (Lond) ; 10(19): 2973-2988, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26420448

RESUMEN

AIM: To develop biocompatible, tumor-specific multifunctional iron-oxide nanoconstructs targeting neuroblastoma, an aggressive pediatric malignancy. MATERIALS & METHODS: Clinical-grade humanized monoclonal antibody (hu14.18K322A), designed to target GD2 antigen on neuroblastoma with reduced nonspecific immune interactions, was conjugated to hydroxyethyl starch-coated iron-oxide nanoparticles. Targeting capability in vitro and in vivo was assessed by immunofluorescence, electron microscopy, analytical spectrophotometry, histochemistry and magnetic resonance R2* relaxometry. RESULTS: The biocompatible nanoconstructs demonstrated high tumor specificity in vitro and in vivo, and low background uptake in a mouse flank xenograft model. Specific accumulation in tumors enabled particle visualization and quantification by magnetic resonance R2* mapping. CONCLUSION: Our findings support the further development toward clinical application of this anti-GD2 iron-oxide nanoconstruct as diagnostic and therapeutic scaffold for neuroblastoma and potentially other GD2-positive malignancies.

11.
J Mater Chem B ; 2(37): 6198-6206, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26660881

RESUMEN

Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules.

12.
Curr Pharm Des ; 19(37): 6606-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23621531

RESUMEN

Iron oxide (IO) nanoparticles hold great promise as diagnostic and therapeutic agents in oncology. Their intrinsic physical properties make IO nanoparticles particularly interesting for simultaneous drug delivery, molecular imaging, and applications such as localized hyperthermia. Multiple non-targeted IO nanoparticle preparations have entered clinical trials, but more exciting, new tumortargeted IO nanoparticle preparations are currently being tested in preclinical settings. This paper will analyze the challenges faced by this new theranostic modality, with a specific focus on the interactions of IO nanoparticles with the innate and adaptive immune systems, and their effect on nanoparticle biodistribution and tumor targeting. Next, we will review the critical need for innovative surface chemistry solutions and strategies to overcome the immune interactions that prevent existing tumor-targeted IO preparations from entering clinical trials. Finally, we will provide an outlook for the future role of IO nanoparticles in oncology, which have the promise of becoming significant contributors to improved diagnosis and treatment of cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Diagnóstico por Imagen , Compuestos Férricos/química , Sistema Inmunológico , Nanopartículas/administración & dosificación , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Animales , Humanos , Nanopartículas/uso terapéutico , Neoplasias/inmunología
13.
J Immunol ; 178(1): 520-9, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17182592

RESUMEN

Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1alpha increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1alpha-induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS.


Asunto(s)
Encéfalo/irrigación sanguínea , Células Dendríticas/inmunología , Endotelio Vascular/inmunología , Proteínas Inflamatorias de Macrófagos/fisiología , Metaloproteinasas de la Matriz/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocinas/farmacología , Quimiocinas/fisiología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/enzimología , Endotelio Vascular/ultraestructura , Inhibidores Enzimáticos/farmacología , Femenino , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Activación de Linfocitos , Proteínas Inflamatorias de Macrófagos/farmacología , Metaloproteinasa 2 de la Matriz/fisiología , Metaloproteinasa 9 de la Matriz/fisiología , Inhibidores de la Metaloproteinasa de la Matriz , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Ocludina , Uniones Estrechas/química , Uniones Estrechas/ultraestructura
14.
Int Immunol ; 14(3): 241-7, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11867560

RESUMEN

We have used a set of single-chain variable fragment antibodies (sc) genetically fused with an influenza hemagglutinin-derived peptide as a means to investigate the role of CR1 and CR2 in antigen presentation by B cells. When incubated with the B cell lymphoma 2PK3, peptide-containing sc specific for either CR1 or CR1/2 mediated activation of the hemagglutinin peptide-specific T cell line IP-12-7, as assessed by IL-2 production. Efficient presentation was dependent on the binding of the constructs to CR1/2, implying that receptor-mediated endocytosis is responsible for the effect. Cross-linkage of CR1/2 or CD19 by mAb did not increase the extent of T cell activation. However, when CR1/2 was co-ligated with the BCR--using either polyclonal goat anti-mouse IgG or recombinant protein LA--the antigen concentration required to activate T cells decreased by two orders of magnitude. Moreover, this enhancement was selective for the antigen included in these complexes and did not affect the presentation of a free peptide or of antigen bound to CR1/2 excluded from the complexes. These results suggest that B cells may bind various C3d-coated antigens at a time, but only the one which reacts with the BCR will be processed with high efficiency. This mechanism may ensure the specificity of cognate T cell help.


Asunto(s)
Presentación de Antígeno , Linfocitos B/inmunología , Complemento C3d/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Complemento/fisiología , Animales , Células Cultivadas , Ratones , Modelos Inmunológicos , Receptores de Complemento 3b/fisiología , Receptores de Complemento 3d/fisiología , Células Tumorales Cultivadas
15.
J Autoimmun ; 20(2): 125-33, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12657526

RESUMEN

Adoptive transfer of lymphocytes co-cultured with syngeneic smooth muscle (SM) cells to healthy recipient mice results in vasculitic lesions predominantly in post-capillary venules. The present study focuses on the mechanisms by which the disease-inducing CD4(+) T cells are generated in co-culture of lymphocytes with SM cells. Microvascular SM cells provide survival signals to both CD4(+) and CD8(+) naïve syngeneic T cells and can activate only a limited range of CD4(+) T lymphocytes in culture. Additionally, approximately 0.4% of the original CD4(+) T cells divide at least twice in co-culture with SM cells. Survival of CD4(+) T cells in co-culture is dependent on a TCR mediated process, since transgenic CD4 (+)cells with a unique specificity for a non-murine peptide do not survive in culture with SM. Analysis of TCR Vbeta shows no superantigen activation of T cells following co-culture with SM cells. Spectratype analysis of TCR Vbeta Jbeta segment usage reveals a skewage in the TCR repertoire of T cells co-cultured with SM, and also of T cells from vasculitic lung. These results are consistent with a specific immune response of pathogenic T cells against one or more activating antigenic determinants of the microvascular SM cells, in contrast to non-specific cytokine activation.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Músculo Liso Vascular/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Vasculitis/inmunología , Traslado Adoptivo , Animales , División Celular , Técnicas de Cocultivo , Regiones Determinantes de Complementariedad/inmunología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/inmunología , Vasculitis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA