Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 191: 106393, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154608

RESUMEN

Phosphodiesterase 2 A (PDE2A) is an enzyme involved in the homeostasis of cAMP and cGMP and is the most highly expressed PDE in human brain regions critical for socio-cognitive behavior. In cerebral cortex and hippocampus, PDE2A expression level is upregulated in Fmr1-KO mice, a model of the Fragile X Syndrome (FXS), the most common form of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Indeed, PDE2A translation is negatively modulated by FMRP, whose functional absence causes FXS. While the pharmacological inhibition of PDE2A has been associated to its pro-cognitive role in normal animals and in models of ID and ASD, homozygous PDE2A mutations have been identified in patients affected by ID, ASD and epilepsy. To clarify this apparent paradox about the role of PDE2A in brain development, we characterized here Pde2a+/- mice (homozygote animals being not viable) at the behavioral, cellular, molecular and electrophysiological levels. Pde2a+/- females display a milder form of the disorder with reduced cognitive performance in adulthood, conversely males show severe socio-cognitive deficits throughout their life. In males, these phenotypes are associated with microglia activation, elevated glutathione levels and increased externalization of Glutamate receptor (GluR1) in CA1, producing reduced mGluR-dependent Long-term Depression. Overall, our results reveal molecular targets of the PDE2A-dependent pathway underlying socio-cognitive performance. These results clarify the mechanism of action of pro-cognitive drugs based on PDE2A inactivation, which have been shown to be promising therapeutic approaches for Alzheimer's disease, schizophrenia, FXS as well as other forms of ASD.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Animales , Femenino , Humanos , Masculino , Ratones , Cognición , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ratones Noqueados , Microglía/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo
2.
Biol Chem ; 404(10): 931-937, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37658578

RESUMEN

The distance between CaV2.1 voltage-gated Ca2+ channels and the Ca2+ sensor responsible for vesicle release at presynaptic terminals is critical for determining synaptic strength. Yet, the molecular mechanisms responsible for a loose coupling configuration of CaV2.1 in certain synapses or developmental periods and a tight one in others remain unknown. Here, we examine the nanoscale organization of two CaV2.1 splice isoforms (CaV2.1[EFa] and CaV2.1[EFb]) at presynaptic terminals by superresolution structured illumination microscopy. We find that CaV2.1[EFa] is more tightly co-localized with presynaptic markers than CaV2.1[EFb], suggesting that alternative splicing plays a crucial role in the synaptic organization of CaV2.1 channels.


Asunto(s)
Terminales Presinápticos , Vesículas Sinápticas , Isoformas de Proteínas , Sinapsis
3.
J Cell Sci ; 129(14): 2852-64, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27270670

RESUMEN

Brain-derived neurotrophic factor (BDNF) is encoded by multiple mRNA variants whose differential subcellular distribution constitutes a 'spatial code' for local translation of BDNF and selective morphological remodeling of dendrites. Here, we investigated where BDNF translation takes place and what are the signaling pathways involved. Cultured hippocampal neurons treated with KCl showed increased BDNF in the soma, proximal and distal dendrites, even in quaternary branches. This activity-dependent increase of BDNF was abolished by cycloheximide, suggesting local translation, and required activation of glutamate and Trk receptors. Our data showed that BDNF translation was regulated by multiple signaling cascades including RAS-Erk and mTOR pathways, and CaMKII-CPEB1, Aurora-A-CPEB1 and Src-ZBP1 pathways. Aurora-A, CPEB1, ZBP1 (also known as IGF2BP1), eiF4E, S6 (also known as rpS6) were present throughout the dendritic arbor. Neuronal activity increased the levels of Aurora-A, CPEB1 and ZBP1 in distal dendrites whereas those of eiF4E and S6 were unaffected. BDNF-6, the main dendritic BDNF transcript, was translated in the same subcellular domains and in response to the same pathways as total BDNF. In conclusion, we identified the signaling cascades controlling BDNF translation and we describe how the translational machinery localization is modulated in response to electrical activity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/metabolismo , Transducción de Señal , Animales , Especificidad de Anticuerpos/inmunología , Factor Neurotrófico Derivado del Encéfalo/genética , Región CA1 Hipocampal/metabolismo , Dendritas/efectos de los fármacos , Exones/genética , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Pilocarpina/farmacología , Cloruro de Potasio/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal/efectos de los fármacos
4.
Blood ; 125(5): 869-72, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25361813

RESUMEN

Inherited thrombocytopenias (ITs) are a heterogeneous group of syndromic and nonsyndromic diseases caused by mutations affecting different genes. Alterations of ACTN1, the gene encoding for α-actinin 1, have recently been identified in a few families as being responsible for a mild form of IT (ACTN1-related thrombocytopenia; ACTN1-RT). To better characterize this disease, we screened ACTN1 in 128 probands and found 10 (8 novel) missense heterozygous variants in 11 families. Combining bioinformatics, segregation, and functional studies, we demonstrated that all but 1 amino acid substitution had deleterious effects. The clinical and laboratory findings of 31 affected individuals confirmed that ACTN1-RT is a mild macrothrombocytopenia with low risk for bleeding. Low reticulated platelet counts and only slightly increased serum thrombopoietin levels indicated that the latest phases of megakaryopoiesis were affected. Given its relatively high frequency in our cohort (4.2%), ACTN1-RT has to be taken into consideration in the differential diagnosis of ITs.


Asunto(s)
Actinina/genética , Plaquetas/metabolismo , Mutación Missense , Fenotipo , Trombocitopenia/genética , Actinina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Plaquetas/patología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Expresión Génica , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Recuento de Plaquetas , Índice de Severidad de la Enfermedad , Trombocitopenia/metabolismo , Trombocitopenia/patología , Trombocitopenia/fisiopatología , Trombopoyesis/genética , Trombopoyetina/sangre
5.
Int J Mol Sci ; 17(3): 365, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26978350

RESUMEN

Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate pathway in a neuronal cell line (Daoy), using statins or mevalonate, induced an increase in the expression of the inflammasome gene (NLRP3) and programmed cell death related to mitochondrial dysfunction. The morphology of the mitochondria changed, clearly showing the damage induced by oxidative stress and the decreased membrane potential associated with the alterations of the mitochondrial function. The co-administration of geranylgeraniol (GGOH) reduced the inflammatory marker and the damage of the mitochondria, maintaining its shape and components. Our data allow us to speculate about the mechanism by which isoprenoids are able to rescue the inflammatory marker in neuronal cells, independently from the block of the mevalonate pathway, and about the fact that cell death is mitochondria-related.


Asunto(s)
Diterpenos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Deficiencia de Mevalonato Quinasa/metabolismo , Ácido Mevalónico/farmacología , Mitocondrias/efectos de los fármacos , Apoptosis , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Deficiencia de Mevalonato Quinasa/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Biológicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos
6.
J Biol Chem ; 289(40): 27702-13, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25074925

RESUMEN

The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.


Asunto(s)
Empalme Alternativo , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/genética , Evaluación Preclínica de Medicamentos , Extensión de la Cadena Peptídica de Translación , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Genes Reporteros , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Int J Neuropsychopharmacol ; 18(12)2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26108221

RESUMEN

BACKGROUND: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. METHODS: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF(Met) allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. RESULTS: BDNF-4 and BDNF-6 transcripts were reduced in BDNF(Met/Met) mice, compared with BDNF(Val/Val) mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNF(Met/Met). The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNF(Met/Met) mice, while no changes were found for BDNF-2 and BDNF-4. CONCLUSIONS: Impaired BDNF expression and dendritic targeting in BDNF(Met/Met) mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/metabolismo , Polimorfismo Genético , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Inmunoprecipitación de Cromatina , Dendritas/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Hibridación in Situ , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones Transgénicos , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología , Complejo Represivo Polycomb 2/metabolismo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Isoformas de Proteínas , Transporte de Proteínas/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 108(40): 16813-8, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21933955

RESUMEN

BDNF is produced from many transcripts that display distinct subcellular localization, suggesting that spatially restricted effects occur as a function of genetic and physiological regulation. Different BDNF 5' splice variants give a restricted localization in the cell body or the proximal and distal compartments of dendrites; however, the functional consequences are not known. Silencing individual endogenous transcripts or overexpressing BDNF-GFP transcripts in cultured neurons demonstrated that whereas some transcripts (1 and 4) selectively affected proximal dendrites, others (2C and 6) affected distal dendrites. Moreover, segregation of BDNF transcripts resulted in a highly selective activation of the BDNF TrkB receptor. These studies indicate that spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/metabolismo , Hipocampo/citología , Neuronas/citología , Análisis de Varianza , Animales , Cartilla de ADN/genética , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Neuronas/metabolismo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley
9.
J Mech Behav Biomed Mater ; 155: 106571, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744118

RESUMEN

Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.


Asunto(s)
Fibrosis , Miocitos Cardíacos , Reología , Esferoides Celulares , Animales , Esferoides Celulares/citología , Esferoides Celulares/patología , Ratas , Miocitos Cardíacos/citología , Fibroblastos/citología , Miocardio/citología , Miocardio/patología , Miocardio/metabolismo , Ratas Wistar , Modelos Biológicos
10.
Pharmaceutics ; 16(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794326

RESUMEN

BACKGROUND: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.

11.
Hippocampus ; 23(5): 413-23, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23436435

RESUMEN

Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity and is one of those genes that generate multiple mRNAs with different alternatively spliced 5'UTRs. The functional significance of many BDNF transcripts, each producing the same protein, is emerging. On the basis of the analysis of the four most abundant brain BDNF transcripts, we recently proposed the "spatial code hypothesis of BDNF splice variants" according to which the BDNF transcripts, through their differential subcellular localization in soma or dendrites, represent a mechanism to synthesize the protein at distinct locations and produce local effects. In this study, using laser microdissection of hippocampal laminae and reverse transcription-quantitative real-time PCR (RT-qPCR), we analyzed all known BDNF mRNA variants at resting conditions or following 3 h pilocarpine-induced status epilepticus. In untreated rats, we found dendritic enrichment of BDNF transcripts encoding exons 6 and 7 in CA1; exons 1, 6, and 9a in CA3; and exons 5, 6, 7, and 8 in DG. Considering the low abundance of the other transcripts, exon 6 was the main transcript in dendrites under resting conditions. Pilocarpine treatment induced an increase of BDNF transcripts encoding exons 4 and 6 in all dendritic laminae and, additionally, of exon 2 in CA1 stratum radiatum and exons 2, 3, 9a in DG molecular layer while the other transcripts were decreased in dendrites, suggesting restriction to the soma. These results support the hypothesis of a spatial code to differentially regulate BDNF in the somatic or dendritic compartment under conditions of pilocarpine-induced status epilepticus and, furthermore, highlight the existence of subfield-specific differences.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología , ARN Mensajero/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Microdisección , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas
12.
FASEB J ; 26(3): 1052-63, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22094718

RESUMEN

Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.


Asunto(s)
Síndrome de Crigler-Najjar/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Glucuronosiltransferasa/genética , Animales , Animales Recién Nacidos , Bilirrubina/sangre , Northern Blotting , Western Blotting , Cerebelo/enzimología , Cerebelo/metabolismo , Cerebelo/patología , Síndrome de Crigler-Najjar/enzimología , Síndrome de Crigler-Najjar/mortalidad , Dependovirus/clasificación , Dependovirus/genética , Regulación Enzimológica de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Glucuronosiltransferasa/deficiencia , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
13.
Adv Healthc Mater ; 12(26): e2300973, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369130

RESUMEN

The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.


Asunto(s)
Actinas , Hidrogeles , Sefarosa/química , Hidrogeles/química , Adhesión Celular , Cinética
14.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444489

RESUMEN

External and internal mechanical forces modulate cell morphology, movement, proliferation and metabolism, and represent crucial inputs for tissue homeostasis. The transcriptional regulators YAP and TAZ are important effectors of mechanical signaling and are frequently activated in solid tumors, correlating with metastasis, chemoresistance, and shorter patient survival. YAP/TAZ activity is controlled by various pathways that sense cell shape, polarity, contacts, and mechanical tension. In tumors, aberrant YAP/TAZ activation may result from cancer-related alterations of such regulatory networks. The tumor suppressor DAB2IP is a Ras-GAP and scaffold protein that negatively modulates multiple oncogenic pathways and is frequently downregulated or inactivated in solid tumors. Here, we provide evidence that DAB2IP expression is sustained by cell confluency. We also find that DAB2IP depletion in confluent cells alters their morphology, reducing cell packing while increasing cell stiffness. Finally, we find that DAB2IP depletion in confluent cells favors YAP/TAZ nuclear localization and transcriptional activity, while its ectopic expression in subconfluent cells increases YAP/TAZ retention in the cytoplasm. Together, these data suggest that DAB2IP may function as a sensor of cell interactions, contributing to dampening cellular responses to oncogenic inputs in confluent cells and that DAB2IP loss-of-function would facilitate YAP/TAZ activation in intact epithelia, accelerating oncogenic transformation.

15.
Nat Biotechnol ; 40(8): 1285-1294, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35393561

RESUMEN

Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics.


Asunto(s)
Sistemas CRISPR-Cas , Vectores Genéticos , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Endonucleasas/genética , Edición Génica/métodos , Recombinación Homóloga , Humanos , Ratones , Vidarabina/análogos & derivados
16.
Free Radic Biol Med ; 179: 242-251, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808331

RESUMEN

Photodynamic therapy (PDT) is a potential synergistic approach to chemotherapy for treating ovarian cancer, the most lethal gynecologic malignancy. Here we used M13 bacteriophage as a targeted vector for the efficient photodynamic killing of SKOV3 and COV362 cells. The M13 phage was refactored (M13r) to display an EGFR binding peptide in its tip that is frequently overexpressed in ovarian cancer. The refactored phage was conjugated with chlorin e6 (Ce6), one of the most widely used photosensitizers (M13r-Ce6). The new platform, upon irradiation, generated ROS by type I mechanism and showed activity in killing SKOV3 and COV362 cells even at concentrations in which Ce6 alone was ineffective. A microscopy analysis demonstrated an enhanced cellular uptake of M13r-Ce6 compared to free Ce6 and its mitochondrial localization. Western blot analysis revealed significant downregulation in the expression of EGFR in cells exposed to M13r-Ce6 after PDT. Following PDT treatment, autophagy induction was supported by an increased expression of LC3II, along with a raised autophagic fluorescent signal, as observed by fluorescence microscopy analysis for autophagosome visualization. As a conclusion we have herein proposed a bacteriophage-based receptor targeted photodynamic therapy for EGFR-positive ovarian cancer.


Asunto(s)
Clorofilidas , Neoplasias Ováricas , Fotoquimioterapia , Porfirinas , Autofagia , Bacteriófago M13 , Línea Celular , Línea Celular Tumoral , Receptores ErbB/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología
17.
Antioxidants (Basel) ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34943131

RESUMEN

Accumulation of neurotoxic bilirubin due to a transient neonatal or persistent inherited deficiency of bilirubin glucuronidation activity can cause irreversible brain damage and death. Strategies to inhibit bilirubin production and prevent neurotoxicity in neonatal and adult settings seem promising. We evaluated the impact of Bvra deficiency in neonatal and aged mice, in a background of unconjugated hyperbilirubinemia, by abolishing bilirubin production. We also investigated the disposal of biliverdin during fetal development. In Ugt1-/- mice, Bvra deficiency appeared sufficient to prevent lethality and to normalize bilirubin level in adults. Although biliverdin accumulated in Bvra-deficient fetuses, both Bvra-/- and Bvra-/-Ugt1-/- pups were healthy and reached adulthood having normal liver, brain, and spleen histology, albeit with increased iron levels in the latter. During aging, both Bvra-/- and Bvra-/-Ugt1-/- mice presented normal levels of relevant hematological and metabolic parameters. Interestingly, the oxidative status in erythrocytes from 9-months-old Bvra-/- and Bvra-/-Ugt1-/- mice was significantly reduced. In addition, triglycerides levels in these 9-months-old Bvra-/- mice were significantly higher than WT controls, while Bvra-/-Ugt1-/- tested normal. The normal parameters observed in Bvra-/-Ugt1-/- mice fed chow diet indicate that Bvra inhibition to treat unconjugated hyperbilirubinemia seems safe and effective.

18.
BMC Neurosci ; 11: 4, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20074340

RESUMEN

BACKGROUND: Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF) has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. RESULTS: We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. CONCLUSION: The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación de la Expresión Génica , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Enfermedad Aguda , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Lubina , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Sensibilidad y Especificidad , Homología de Secuencia , Estrés Psicológico/diagnóstico , Transcripción Genética
19.
Sci Rep ; 10(1): 2491, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051524

RESUMEN

Dendritic atrophy, defined as the reduction in complexity of the neuronal arborization, is a hallmark of several neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, affecting 1:10,000 girls worldwide, is mainly caused by mutations in the MECP2 gene and has no cure. We describe here an in vitro model of dendritic atrophy in Mecp2-/y mouse hippocampal primary cultures, suitable for phenotypic drug-screening. Using High-Content Imaging techniques, we systematically investigated the impact of culturing determinants on several parameters such as neuronal survival, total dendritic length, dendritic endpoints, soma size, cell clusterization, spontaneous activity. Determinants included cell-seeding density, glass or polystyrene substrates, coating with poly-Ornithine with/without Matrigel and miniaturization from 24 to 96-half surface multiwell plates. We show that in all plate-sizes at densities below 320 cells/mm2, morphological parameters remained constant while spontaneous network activity decreased according to the cell-density. Mecp2-/y neurons cultured at 160 cells/mm2 density in 96 multiwell plates, displayed significant dendritic atrophy and showed a marked increase in dendritic length following treatment with Brain-derived neurotrophic factor (BDNF) or Mirtazapine. In conclusion, we have established a phenotypic assay suitable for fast screening of hundreds of compounds, which may be extended to other neurodevelopmental diseases with dendritic atrophy.


Asunto(s)
Dendritas/patología , Evaluación Preclínica de Medicamentos/métodos , Fármacos Neuroprotectores/farmacología , Fenotipo , Síndrome de Rett/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Dendritas/efectos de los fármacos , Hipocampo/citología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Mirtazapina/farmacología , Síndrome de Rett/patología
20.
Novartis Found Symp ; 289: 136-47; discussion 147-51, 193-5, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18497100

RESUMEN

Long-lasting changes in the basis of memory storage require delivery of newly synthesized proteins to the affected synapses. While most of these proteins are generated in the cell body, several key molecules for plasticity can be delivered in the form of silent mRNAs at synapses in extra-somatic compartments where they are locally translated in response to specific stimuli. One such mRNA encodes brain derived neurotrophic factor (BDNF), a key molecule in neuronal development that plays a critical role in learning and memory, and which displays abnormal levels in several neuropsychiatric disorders. BDNF mRNA accumulates in distal dendrites in response to stimuli that trigger activation of NMDAR and TrkB receptors. A single BDNF protein is produced from several splice variants having different 5'UTRs. We have shown that these mRNA variants have a different subcellular localization (soma, proximal or distal dendritic compartment) and that the protein is co-localized with the transcript from which it originated. As these splice variants are also differentially expressed in response to various stimuli and antidepressants, we propose that they represent a spatial and temporal code to regulate BDNF protein expression locally.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Encéfalo/fisiología , Dendritas/fisiología , Memoria/fisiología , ARN Mensajero/genética , Empalme Alternativo , Epilepsia/genética , Epilepsia/fisiopatología , Variación Genética , Humanos , Trastornos Mentales/genética , Sinapsis/fisiología , Corteza Visual/fisiología , Corteza Visual/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA