Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Inorg Chem ; 26(34)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584911

RESUMEN

A series of isomeric bis(alkylthiocarbamate) copper complexes have been synthesized, characterized, and evaluated for antiproliferation activity. The complexes were derived from ligand isomers with 3-methylpentyl (H2L2) and cyclohexyl (H2L3) backbone substituents, which each yield a pair of linkage isomers. The thermodynamic products CuL2a/3a have two imino N and two S donors resulting in three five-member chelate rings (555 isomers). The kinetic isomers CuL2b/3b have one imino and one hydrazino N donor and two S donors resulting in four-, six-, and five-member rings (465 isomers). The 555 isomers have more accessible CuII/I potentials (E1/2 = -811/-768 mV vs. ferrocenium/ferrocene) and lower energy charge transfer bands than their 465 counterparts (E1/2 = -923/-854 mV). Antiproliferation activities were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR-90) using the MTT assay. CuL2a was potent (A549EC50 = 0.080 µM) and selective (IMR-90EC50/A549EC50 = 25) for A549. Its linkage isomer CuL2b had equivalent A549 activity, but lower selectivity (IMR-90EC50/A549EC50 = 12.5). The isomers CuL3a and CuL3b were less potent with A549EC50 values of 1.9 and 0.19 µM and less selective with IMR-90EC50/A549EC50 ratios of 2.3 and 2.65, respectively. There was no correlation between reduction potential and A549 antiproliferation activity/selectivity.

2.
Inorg Chem ; 61(20): 7715-7719, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35549215

RESUMEN

Linkage isomers are coordination compounds with the same composition but different donor atoms, resulting in distinct physical and electronic structures. A pair of linkage isomers, CuL555 and CuL465, derived from phenylglyoxal bis(ethylthiocarbamate) were synthesized, isolated, and characterized by structural, electrochemical, and spectroscopic methods. The isomers are stable in solution under ambient conditions, but CuL465 converts to CuL555 in acid, consistent with quantum-chemical calculations. The complexes were screened against a lung adenocarcinoma cell line (A549) and a nonmalignant lung fibroblast cell line (IMR-90) to evaluate the antiproliferation activity. CuL555 and CuL465 possessed EC50 values of 0.113 ± 0.030 and 0.115 ± 0.038 µM for A549 and 1.87 ± 0.29 and 0.77 ± 0.22 µM for IMR-90, respectively.


Asunto(s)
Cobre , Cobre/química , Cobre/farmacología , Isomerismo
3.
Inorg Chem ; 59(7): 4924-4935, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32159342

RESUMEN

A series of hybrid ligands (H2L1-H2L3) derived from 4-methyl-3-thiosemicarbazide and hydrazinecarbothioic acid O-alkyl esters were synthesized and characterized by NMR. The ligands were chelated with copper (4-6), nickel (7-9), and zinc (10-12) and characterized by spectroscopy, electrochemistry, and single crystal X-ray crystallography. The chelated metals displayed substantial anodic shifts in the CuII/I reduction potential of ∼160 mV relative to their bis(thiosemicarbazone) analogues. The metal chelates 4-12 were evaluated for potential anticancer activity by MTT assays, and selected results were confirmed by clonogenic and trypan blue assays. The copper derivatives 4 and 6 were found to have potent and cancer-selective antiproliferative effects, with GI50 values less than 100 nM in A549 lung adenocarcinoma cells compared with at least 20-fold less activity in IMR90 nonmalignant lung fibroblasts. In comparison, the nickel complexes were much less active and had little cancer-selectivity. Varying by ligand, the zinc complexes were less potent or had comparable activity compared to that of the corresponding copper complex. UV-visible spectroscopy indicated that zinc complex 10 was transmetalated in the presence of equimolar copper, whereas nickel complex 7 was not. Copper complexes 4 and 6 were also assessed in the NCI60 screen and were found to have cytotoxic activity against most solid tumor cell lines. In MTT assays, 4 and 6 were substantially more active against A549 cancer cells than Cu(ATSM) and were more cancer-selective (for A549 compared to IMR-90) than Cu(GTSM). Our results suggest that hybrid thiosemicarbazone-alkylthiocarbamate copper complexes have potential for development as new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Tiocarbamatos/farmacología , Tiosemicarbazonas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Cobre/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Níquel/química , Tiocarbamatos/síntesis química , Tiosemicarbazonas/síntesis química , Zinc/química
4.
J Inorg Biochem ; 246: 112288, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37320890

RESUMEN

A series of hybrid thiosemicarbazone-alkylthiocarbamate copper complexes with similar electronic environments but distinct physical structures have been prepared, characterized, and evaluated for antiproliferation activity. The complexes include the constitutional isomers (1-phenylpropane-1-imine-(O-ethylthiocarbamato)-2-one-(N-methylthiosemicarbazonato))copper(II) (CuL1) and (1-phenylpropane-1-one-(N-methylthiosemicarbazonato)-2-imine-(O-ethylthiocarbamato))copper(II) (CuL2) along with (1-propane-1-imine-(O-ethylthiocarbamato)-2-one-(N-methylthiosemicarbazonato))copper(II) (CuL3). Complexes CuL1 and CuL2 differ in the positions of the pendent thiosemicarbazone (TSC) and alkylthiocarbamate (ATC) moieties on the 1-phenylpropane backbone. Complex CuL3 employs a propane backbone with the TSC in the 2-position as in CuL1. The isomer pair CuL1 and CuL2 have equivalent electronic environments with indistinguishable CuII/I potentials (E1/2 = -0.86 V vs. ferrocenium/ferrocene) and electron paramagnetic resonance (EPR) spectra (g∥ = 2.26, g⊥ = 2.08). The electronic structure of CuL3 has a similar E1/2 of -0.84 V and identical EPR parameters to CuL1, 2. Single crystal X-ray diffraction studies confirm a consistent donor environment with no substantial variation in the CuN or CuS bond distances and angles between the complexes. The antiproliferation activities of the CuL1-3 were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR-90) using the MTT assay. CuL1 had the highest A549 activity (A549EC50 = 0.065 µM) and selectivity (IMR-90EC50/A549EC50 = 20). The constitutional isomer CuL2 displayed decreased A549 activity (0.18 µM) and selectivity (10.6). The complex CuL3 displayed activity (0.009 µM) similar to CuL1 but with a lack of selectivity (1.0). Cellular copper loading determined by ICP-MS was consistent with the activity and selectivity trends. The complexes CuL1-3 did not induce reactive oxygen species (ROS) generation.


Asunto(s)
Complejos de Coordinación , Tiosemicarbazonas , Cobre/química , Propano , Espectroscopía de Resonancia por Spin del Electrón , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Iminas , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Cristalografía por Rayos X , Ligandos
5.
J Inorg Biochem ; 225: 111620, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619407

RESUMEN

Fungi are ubiquitous in nature, and typically cause little or no environmental or pathogenic damage to their plant, animal, and human hosts. However, a small but growing number of pathogenic fungi are spreading world-wide at an alarming rate threatening global ecosystem health and proliferation. Many of these emerging pathogens have developed multi-drug resistance to front line therapeutics increasing the urgency for the development of new antifungal agents. This review examines the development of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes as potential antifungal agents against more than 65 different fungal strains. The fungistatic activity of the compounds are quantified based on the zone of inhibition, minimum inhibitory concentration, or growth inhibition percentage. In this review, reported activities were standardized based on molar concentrations to simplify comparisons between different compounds. Of all the fungal strains reported in the review, A. niger in particular was very resistant towards a majority of tested compounds. Our analysis of the data shows that metal complexes are typically more active than non-coordinated ligands with copper(II) and zinc(II) complexes generally displaying the highest activity.


Asunto(s)
Antifúngicos/farmacología , Complejos de Coordinación/farmacología , Tiosemicarbazonas/farmacología , Antifúngicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Hongos/efectos de los fármacos , Humanos , Ligandos , Metales Pesados/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tiosemicarbazonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA