Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176145

RESUMEN

Our study proposes a pharmacological strategy to target cancerous mitochondria via redox-cycling "mitocans" such as quinone/ascorbate (Q/A) redox-pairs, which makes cancer cells fragile and sensitive without adverse effects on normal cells and tissues. Eleven Q/A redox-pairs were tested on cultured cells and cancer-bearing mice. The following parameters were analyzed: cell proliferation/viability, mitochondrial superoxide, steady-state ATP, tissue redox-state, tumor-associated NADH oxidase (tNOX) expression, tumor growth, and survival. Q/A redox-pairs containing unprenylated quinones exhibited strong dose-dependent antiproliferative and cytotoxic effects on cancer cells, accompanied by overproduction of mitochondrial superoxide and accelerated ATP depletion. In normal cells, the same redox-pairs did not significantly affect the viability and energy homeostasis, but induced mild mitochondrial oxidative stress, which is well tolerated. Benzoquinone/ascorbate redox-pairs were more effective than naphthoquinone/ascorbate, with coenzyme Q0/ascorbate exhibiting the most pronounced anticancer effects in vitro and in vivo. Targeted anticancer effects of Q/A redox-pairs and their tolerance to normal cells and tissues are attributed to: (i) downregulation of quinone prenylation in cancer, leading to increased mitochondrial production of semiquinone and, consequently, superoxide; (ii) specific and accelerated redox-cycling of unprenylated quinones and ascorbate mainly in the impaired cancerous mitochondria due to their redox imbalance; and (iii) downregulation of tNOX.


Asunto(s)
Neoplasias , Superóxidos , Ratones , Animales , Superóxidos/metabolismo , Oxidación-Reducción , Ácido Ascórbico/metabolismo , Quinonas/metabolismo , Neoplasias/metabolismo , Adenosina Trifosfato/metabolismo
2.
Anal Chem ; 93(5): 2828-2837, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33508934

RESUMEN

Total redox capacity (TRC) and oxidative stress (OxiStress) of biological objects (such as cells, tissues, and body fluids) are some of the most frequently analyzed parameters in life science. Development of highly sensitive molecular probes and analytical methods for detection of these parameters is a rapidly growing sector of BioTech's R&D industry. The aim of the present study was to develop quantum sensors for tracking the TRC and/or OxiStress in living biological objects using electron-paramagnetic resonance (EPR), magnetic resonance imaging (MRI), and optical imaging. We describe a two-set sensor system: (i) TRC sensor QD@CD-TEMPO and (ii) OxiStress sensor QD@CD-TEMPOH. Both redox sensors are composed of small-size quantum dots (QDs), coated with multinitroxide-functionalized cyclodextrin (paramagnetic CD-TEMPO or diamagnetic CD-TEMPOH) conjugated with triphenylphosphonium (TPP) groups. The TPP groups were added to achieve intracellular delivery and mitochondrial localization. Nitroxide residues interact simultaneously with various oxidizers and reducers, and the sensors are transformed from the paramagnetic radical form (QD@CD-TEMPO) into diamagnetic hydroxylamine form (QD@CD-TEMPOH) and vice-versa, because of nitroxide redox-cycling. These chemical transformations are accompanied by characteristic dynamics of their contrast features because of quenching of QD fluorescence by nitroxide radicals. The TRC sensor was applied for EPR analysis of cellular redox-status in vitro on isolated cells with different proliferative indexes, as well as for noninvasive MRI of redox imbalance and severe oxidative stress in vivo on mice with renal dysfunction.


Asunto(s)
Electrones , Estrés Oxidativo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Imagen por Resonancia Magnética , Ratones , Imagen Óptica , Oxidación-Reducción
4.
Gen Physiol Biophys ; 38(3): 191-204, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31184306

RESUMEN

This study reports a non-invasive magnetic resonance imaging (MRI) of kidney dysfunction in mice, based on the induction of redox-imbalance and oxidative stress in the renal tissues, using mito-TEMPO as redox-sensitive contrast probe. Kidney dysfunction was triggered by hypercholesterolemia. The mice were divided in three groups: (i) on normal diet (ND); (ii) on cholesterol diet (CD); (iii) on cholesterol plus cholestyramine diet (CC). After 15 weeks feeding, the mice were subjected to the following analyses: plasma cholesterol levels; serum test for renal functionality; nitroxide-enhanced MRI of tissue redox-status in vivo; histochemical staining of tissue section to visualize renal damage; evaluation of total antioxidant capacity and oxidative stress on isolated tissue specimens. MRI signal of mito-TEMPO in the kidney was characterized by: high intensity and long life-time in CD mice, indicating a high oxidative capacity of renal tissues; poor intensity and short life-time in ND mice, indicating a high reducing capacity; moderate intensity and relatively short life-time in CC mice, indicating a protective effect of lipid-lowering drug. The data were confirmed on isolated tissue specimens, using conventional tests. They suggest that hypercholesterolemia induces redox-imbalance in kidney and this process could be visualized using MRI and mito-TEMPO as a redox-sensitive contrast.


Asunto(s)
Medios de Contraste , Riñón/diagnóstico por imagen , Riñón/fisiopatología , Imagen por Resonancia Magnética/métodos , Compuestos Organofosforados , Estrés Oxidativo , Piperidinas , Animales , Ratones , Oxidación-Reducción
5.
Anal Bioanal Chem ; 408(3): 905-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26715253

RESUMEN

The present study describes a development of nanohydrogel, loaded with QD(705) and manganese (QD(705)@Nanogel and QD(705)@Mn@Nanogel), and its passive and electro-assisted delivery in solid tumors, visualized by fluorescence imaging and magnetic resonance imaging (MRI) on colon cancer-grafted mice as a model. QD(705)@Nanogel was delivered passively predominantly into the tumor, which was visualized in vivo and ex vivo using fluorescent imaging. The fluorescence intensity increased gradually within 30 min after injection, reached a plateau between 30 min and 2 h, and decreased gradually to the baseline within 24 h. The fluorescence intensity in the tumor area was about 2.5 times higher than the background fluorescence. A very weak fluorescent signal was detected in the liver area, but not in the areas of the kidneys or bladder. This result was in contrast with our previous study, indicating that FITC@Mn@Nanogel did not enter into the tumor and was detected rapidly in the kidney and bladder after i.v. injection [J. Mater. Chem. B 2013, 1, 4932-4938]. We found that the embedding of a hard material (as QD) in nanohydrogel changes the physical properties of the soft material (decreases the size and negative charge and changes the shape) and alters its pharmacodynamics. Electroporation facilitated the delivery of the nanohydrogel in the tumor tissue, visualized by fluorescent imaging and MRI. Strong signal intensity was recorded in the tumor area shortly after the combined treatment (QD@Mn@Nanogel + electroporation), and it was observed even 48 h after the electroporation. The data demonstrate more effective penetration of the nanoparticles in the tumor due to the increased permeability of blood vessels at the electroporated area. There was no rupture of blood vessels after electroporation, and there were no artifacts in the images due to a bleeding.


Asunto(s)
Neoplasias del Colon/química , Portadores de Fármacos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Imagen por Resonancia Magnética/instrumentación , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
6.
Chin J Cancer Res ; 28(4): 383-96, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27647966

RESUMEN

Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.

7.
Anal Chem ; 87(23): 11625-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26525641

RESUMEN

We previously have developed the photoresponsive tetra-gel and nanoparticles for controlling the function of the encapsulated substance by UV irradiation. However, the penetration ability of the UV is not high enough. Here, we developed a radiation-responsive tetra-gel and nanoparticle based on γ-ray-responsive X-shaped polyethylene glycol (PEG) linker with a disulfide bond. The nanoparticle could retain small molecules and biomacromolecules. γ-Rays were used as a trigger signal because of their higher penetrating ability. This allowed a spatiotemporal release and control of the encapsulated substances from the nanoparticle in the deeper region, which is impossible by using light exposure (ultraviolet, visible, and near-infrared).


Asunto(s)
Rayos gamma , Polietilenglicoles/química , Proteínas/química , Animales , Disulfuros/química , Geles/química , Estructura Molecular , Nanopartículas/química , Polietilenglicoles/síntesis química , Porcinos
8.
Gen Physiol Biophys ; 34(4): 393-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26221745

RESUMEN

The present study was designed to investigate whether poly-ion complex hollow vesicles (polymersomes), based on chemically-modified chitosan, are appropriate for lymph node mapping in the context of their application in the development of theranostic nanosized drug delivery systems (nano-DDS). The experiments were performed on Balb/c nude mice (colon cancer-grafted). The mice were subjected to anesthesia and quantum dot (QD(705))-labeled polymersomes (d-120 nm) were injected intravenously via the tail vein. The optical imaging was carried out on Maestro EX Imaging System (excitation filter: 435-480 nm; emission filter: 700 nm). A strong fluorescent signal, corresponding to QD(705) fluorescence, was detected in the lymph nodes, as well as in the tumor. A very weak fluorescent signal was found in the liver area. The half-life of QD(705)-labelled polymersomes was 6 ± 2 hours in the bloodstream and 11 ± 3 hours in the lymph nodes. The data suggest that polymersomes are very promising carriers for lymph node mapping using QD as a contrast agent. They are useful matrix for development of nano-formulations with theranostic capabilities.


Asunto(s)
Quitosano/química , Neoplasias del Colon/patología , Neoplasias del Colon/secundario , Ganglios Linfáticos/patología , Nanocápsulas/química , Puntos Cuánticos , Animales , Línea Celular Tumoral , Materiales Biocompatibles Revestidos/síntesis química , Medios de Contraste , Aumento de la Imagen/métodos , Metástasis Linfática , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanocápsulas/ultraestructura , Tamaño de la Partícula , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos , Nanomedicina Teranóstica/métodos
9.
Biotechnol Biotechnol Equip ; 29(1): 175-180, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26019630

RESUMEN

The present study was designed to investigate whether poly-ion complex hollow vesicles (polymersomes), based on chemically modified chitosan, are appropriate for passive tumour targeting in the context of their application as drug carriers. The experiments were performed on colon cancer-grafted mice. The mice were subjected to anaesthesia and injected intravenously with water-soluble nanoparticles: (1) QD705-labelled polymersomes (average size ∼120 nm; size distribution ∼10%) or (2) native QD705. The optical imaging was carried out on Maestro EX 2.10 In Vivo Imaging System (excitation filter 435-480 nm; emission filter 700 nm, longpass). In the case of QD705, the fluorescence appeared in the tumour area within 1 min after injection and disappeared completely within 60 min. A strong fluorescent signal was detected in the liver on the 30th minute. The visualization of tumour using QD705 was based only on angiogenesis. In the case of QD705-labelled polymersomes, the fluorescence appeared in the tumour area immediately after injection with excellent visualization of blood vessels in the whole body. A strong fluorescent signal was detected in the tumour area within 16 hours. This indicated that QD705-labelled polymersomes were delivered predominantly into the tumour due to their long circulation in the bloodstream and enhanced permeability and retention effect. A very weak fluorescent signal was found in the liver area. The data suggest that size-controlled long-circulating polymersomes are very promising carriers for drug delivery in solid tumours, including delivery of small nanoparticles and contrast substances.

10.
Sensors (Basel) ; 13(3): 3625-34, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23493125

RESUMEN

The study aimed to clarify the role of electric pulses in combination with chemotherapy on the viability of keratinocyte cell line HaCaT, in the context of its application as a new therapeutic approach for psoriasis. The data show that electroporation of HaCaT cells in combination with rifampicin induces cytoskeleton disruption and increases permeability of cell monolayer due to cell-cell junctions' interruption, visualized by fluorescent imaging of E-cadherin and actin integrity. This was accompanied with synergistic reduction of cell viability. The study proposes a new opportunity for more effective skin treatment than chemotherapy. The future application of this electrochemotherapeutic approach for combined local treatment of psoriasis may have serous benefits because of a high possibility to avoid side-effects of conventional chemotherapy.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Electroporación/métodos , Psoriasis/tratamiento farmacológico , Rifampin/administración & dosificación , Cadherinas/química , Cadherinas/metabolismo , Línea Celular , Terapia Combinada , Colorantes Fluorescentes , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Permeabilidad , Psoriasis/patología
11.
Redox Rep ; 28(1): 2220531, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37581329

RESUMEN

Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues.Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX).Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A.Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration.


Asunto(s)
Glioblastoma , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Línea Celular Tumoral , Ácido Ascórbico/farmacología , Oxidación-Reducción , Estrés Oxidativo
12.
Anticancer Res ; 43(3): 1213-1220, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854499

RESUMEN

BACKGROUND/AIM: Mitochondria-targeted anticancer drugs ("mitocans") of natural origin are attractive candidates as adjuvants in cancer therapy. The redox couple menadione/ascorbate (M/A), which belongs to the "mitocans" family, induces selective oxidative stress in cancerous mitochondria and cells, respectively. DHA has also been found to regulate the mevalonate pathway, which is closely related to the prenylation of the cytotoxic menadione to the non-cytotoxic menaquinone. The aim of this study was to elucidate the ability of docosahexaenoic acid (DHA) to potentiate the anticancer effect of M/A by increasing ROS production, as well as affecting steady-state ATP levels in cancer cells. MATERIALS AND METHODS: The experiments were performed on leukemic lymphocyte Jurkat. Cells were treated with DHA, M/A, and their combination (M/A/DHA) and four parameters were examined using the following assays: cell viability and proliferation, steady-state ATP, mitochondrial superoxide, intracellular hydroperoxides. Three independent experiments with two or six parallel measurements were performed for each parameter. RESULTS: The triple combination M/A/DHA was characterized by much higher antiproliferative activity and cytotoxicity than M/A and DHA administered alone. DHA significantly accelerated M/A-induced ATP depletion in cells, which was accompanied by an additional increase in mitochondrial superoxide compared to cells treated with M/A or DHA alone. CONCLUSION: DHA significantly enhanced M/A-induced cytotoxicity in leukemic lymphocytes by inducing severe mitochondrial oxidative stress and accelerated ATP depletion. Selective DHA-mediated suppression of cholesterol synthesis in cancer cells (involved in the prenylation of cytotoxic menadione to the less cytotoxic phylloquinone), as well as DHA-mediated inhibition of superoxide dismutase are suggested to underlie the potentiation of the anticancer effect of M/A.


Asunto(s)
Superóxidos , Vitamina K 3 , Humanos , Vitamina K 3/farmacología , Ácidos Docosahexaenoicos/farmacología , Mitocondrias , Oxidación-Reducción , Ácido Ascórbico/farmacología , Adenosina Trifosfato
13.
Anticancer Res ; 43(3): 1207-1212, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854536

RESUMEN

BACKGROUND/AIM: An increasing number of studies are reporting anticancer activity of widely used antiparasitic drugs and particularly benzimidazoles. Fenbendazole is considered safe and tolerable in most animal species at the effective doses as an anthelmintic. Little is known about the redox-modulating properties of fenbendazole and the molecular mechanisms of its antiproliferative effects. Our study aimed to investigate the possibility of selective redox-mediated treatment of triple-negative breast cancer cells by fenbendazole without affecting the viability and redox status of normal breast epithelial cells. MATERIALS AND METHODS: The experiments were performed on three cell lines: normal breast epithelial cells (MCF-10A) and cancer breast epithelial cells (MCF7 - luminal adenocarcinoma, low metastatic; MDA-MB-231 - triple-negative adenocarcinoma, highly metastatic). Cells were treated with fenbendazole for 48-h and three parameters were analyzed using conventional assays: cell viability and proliferation, level of intracellular superoxide, and level of hydroperoxides. RESULTS: The data demonstrated that MDA-MB-231 cells were more vulnerable to fenbendazole-induced oxidative stress than MCF-7 cells. In normal breast epithelial cells MCF-10A, fenbendazole significantly suppressed oxidative stress compared to untreated controls. These data correlate with the effect of fenbendazole on cell viability and the IC50 values, which is indirect evidence of the potential targeting anticancer effect of the drug, especially in MDA-MB-231 cells. CONCLUSION: The difference in the levels of oxidative stress induced by fenbendazole in MDA-MB-231 and MCF-7 indicates that the two types of breast cancer respond to the drug through different redox-related mechanisms.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fenbendazol/farmacología , Células Epiteliales , Células MCF-7
14.
Biochim Biophys Acta ; 1810(12): 1309-16, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21767608

RESUMEN

BACKGROUND: Gd-DTPA-enhanced magnetic resonance imaging (MRI) is a conventional method for non-invasive investigation of blood-brain-barrier (BBB) permeability in animal models. It allows the visualization of serious injury to the BBB. We developed a novel approach for detecting very small disruptions in BBB permeability induced by dietary cholesterol by using carbamoyl-PROXYL (CMP) as an MRI contrast probe. METHODS: Mice were separated into two groups: normal diet (ND-mice) and high cholesterol diet (CD-mice). MRI-signal dynamics, plasma cholesterol, matrix metalloproteinase (MMP-9, MMP-2), and the white blood cell profile were analyzed. For the MRI analysis, two regions-of-interest (ROI) were selected: brain (ROI-1) and surrounding area (ROI-2). RESULTS: In the ROI-2 of ND-mice, CMP- or Gd-enhanced MRI-signal followed typical kinetics with a half-life of signal decay (τ(1/2)) approximately 8 or approximately 15 min, respectively. In CD-mice, the MRI-signal increased continuously without decay. In the ROI-1 of ND- and CD-mice, MRI-signal enhancement was not detected by Gd-DTPA. In the ROI-1 of ND-mice, CMP-induced MRI-signal enhancement was negligible, while in CD-mice, it was significant (τ(1/2)>15 min). Hypercholesterolemia increased the plasma levels of MMP-9 and neutrophils. CONCLUSIONS: Hypercholesterolemia increases vascular permeability, which is mediated by MMP-9 and neutrophils. GENERAL SIGNIFICANCE: Even very small disruptions in brain vascular permeability could be detected by CMP-enhanced MRI but not by Gd-DTPA-enhanced MRI.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Circulación Cerebrovascular , Colesterol en la Dieta/farmacología , Imagen por Resonancia Magnética/métodos , Animales , Peso Corporal , Colesterol/sangre , Ratones
15.
Redox Biol ; 53: 102337, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584568

RESUMEN

Recent studies demonstrate that redox imbalance of NAD+/NADH and NADP+/NADPH pairs due to impaired respiration may trigger two "hidden" metabolic pathways on the crossroad between mitochondrial dysfunction, senescence, and proliferation: "ß-oxidation shuttle" and "hydride transfer complex (HTC) cycle". The "ß-oxidation shuttle" induces NAD+/NADH redox imbalance in mitochondria, while HTC cycle maintains the redox balance of cytosolic NAD+/NADH, increasing the redox disbalance of NADP+/NADPH. Senescence appears to depend on high cytoplasmic NADH but low NADPH, while proliferation depends on high cytoplasmic NAD+ and NADPH that are under mitochondrial control. Thus, activating or deactivating the HTC cycle can be crucial to cell fate - senescence or proliferation. These pathways are a source of enormous cataplerosis. They support the production of large amounts of NADPH and intermediates for lipid synthesis and membrane biogenesis, as well as for DNA synthesis.


Asunto(s)
Mitocondrias , NAD , Proliferación Celular , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción
16.
Antioxid Redox Signal ; 36(1-3): 95-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34148403

RESUMEN

Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.


Asunto(s)
Medios de Contraste , Medicina de Precisión , Medios de Contraste/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Óxidos de Nitrógeno/química , Oxidación-Reducción
17.
Biophys Chem ; 286: 106819, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605496

RESUMEN

This review focuses on electrochemotherapy that consists in the delivery of anti-cancer drugs using high-voltage electrical pulses. Technical issues, choice of drugs, and protocol of drug delivery are still under investigation and no consensus has been achieved yet. The different aspects of electrochemotherapy are discussed in the present paper. It includes interrogations about the choice of the preferred anti-cancer drug and dose to be delivered on the solid tumors. Another promising area is related to the electro-assisted release of nanoparticles (quantum dots) in xenografted solid tumors. Molecular mechanisms of enhanced drug delivery are discussed in terms of high cholesterol level and large fraction of lipid rafts in cancer cells. Electrochemotherapy is a paradigmatic example of cooperation between physicists, biophysicists, chemists, technicians, manufacturers, biologists, clinicians, and patients to improve a very promising treatment delivery in line with the conception of personalized medicine.


Asunto(s)
Antineoplásicos , Electroquimioterapia , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Electroquimioterapia/métodos , Electroporación/métodos , Humanos , Neoplasias/patología , Preparaciones Farmacéuticas
18.
Cancers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35205619

RESUMEN

A considerable amount of data have accumulated in the last decade on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. As a result, mFAO was found to coexist with abnormally activated fatty acid synthesis (FAS) and the mevalonate pathway. Recent studies have demonstrated that overactivated mitochondrial ß-oxidation may aggravate the impaired mitochondrial redox state and vice versa. Furthermore, the impaired redox state of cancerous mitochondria can ensure the continuous operation of ß-oxidation by disconnecting it from the Krebs cycle and connecting it to the citrate-malate shuttle. This could create a new metabolic state/pathway in cancer cells, which we have called the "ß-oxidation-citrate-malate shuttle", or "ß-oxidation shuttle" for short, which forces them to proliferate. The calculation of the phosphate/oxygen ratio indicates that it is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathways. The "ß-oxidation shuttle" is an unconventional mFAO, a separate metabolic pathway that has not yet been explored as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and, ultimately, a source of proliferation. The role of the "ß-oxidation shuttle" and its contribution to redox-altered cancer metabolism provides a new direction for the development of future anticancer strategies. This may represent the metabolic "secret" of cancer underlying hypoxia and genomic instability.

19.
Oxid Med Cell Longev ; 2022: 2339584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178152

RESUMEN

Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial ß-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated ß-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial ß-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition "ß-oxidation shuttle". It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Humanos , Oxidación-Reducción
20.
Anticancer Res ; 42(1): 547-554, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34969764

RESUMEN

BACKGROUND/AIM: This study analysed the effect of α-tocopheryl succinate (α-TS) on the redox-state of leukemia and normal lymphocytes, as well as their sensitization to fifteen anticancer drugs. MATERIALS AND METHODS: Cell viability was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by FITC-Annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen species (ROS) and protein-carbonyl products. RESULTS: Most combinations (α-TS plus anticancer drug) exerted additive or antagonistic effects on the proliferation and viability of leukemia lymphocytes. α-TS combined with barasertib, bortezomib or lonafarnib showed a strong synergistic cytotoxic effect, which was best expressed in the case of barasestib. It was accompanied by impressive induction of apoptosis and increased production of ROS, but insignificant changes in protein-carbonyl levels. α-TS plus barasertib did not alter the viability and did not induce oxidative stress and apoptosis in normal lymphocytes. CONCLUSION: α-TS could be a promising adjuvant in second-line anticancer therapy, particularly in acute lymphoblastic leukemia, to reduce the therapeutic doses of barasertib, bortezomib, and lonafarnib, increasing their effectiveness and minimizing their side effects.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Leucemia/tratamiento farmacológico , alfa-Tocoferol/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Células Jurkat/efectos de los fármacos , Leucemia/genética , Leucemia/patología , Linfocitos/efectos de los fármacos , Linfocitos/patología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno , Succinatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA