RESUMEN
Epidemiology studies of traumatic brain injury (TBI) show individuals with a prior history of TBI experience an increased risk of future TBI with a significantly more detrimental outcome. But the mechanisms through which prior head injuries may affect risks of injury during future head insults have not been identified. In this work, we show that prior brain tissue injury in the form of mechanically induced axonal injury and glial scar formation can facilitate future mechanically induced tissue injury. To achieve this, we use finite element computational models of brain tissue and a history-dependent pathophysiology-based mechanically-induced axonal injury threshold to determine the evolution of axonal injury and scar tissue formation and their effects on future brain tissue stretching. We find that due to the reduced stiffness of injured tissue and glial scars, the existence of prior injury can increase the risk of future injury in the vicinity of prior injury during future brain tissue stretching. The softer brain scar tissue is shown to increase the strain and strain rate in its vicinity by as much as 40% in its vicinity during dynamic stretching that reduces the global strain required to induce injury by 20% when deformed at 15 s-1 strain rate. The results of this work highlight the need to account for patient history when determining the risk of brain injury.