Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 134(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33737317

RESUMEN

Rab5 and Rab7a are the main determinants of early and late endosomes and are important regulators of endosomal progression. The transport from early endosomes to late endosome seems to be regulated through an endosomal maturation switch, where Rab5 is gradually exchanged by Rab7a on the same endosome. Here, we provide new insight into the mechanism of endosomal maturation, for which we have discovered a stepwise Rab5 detachment, sequentially regulated by Rab7a. The initial detachment of Rab5 is Rab7a independent and demonstrates a diffusion-like first-phase exchange between the cytosol and the endosomal membrane, and a second phase, in which Rab5 converges into specific domains that detach as a Rab5 indigenous endosome. Consequently, we show that early endosomal maturation regulated through the Rab5-to-Rab7a switch induces the formation of new fully functional Rab5-positive early endosomes. Progression through stepwise early endosomal maturation regulates the direction of transport and, concomitantly, the homeostasis of early endosomes.


Asunto(s)
Endosomas , Proteínas de Unión al GTP rab5 , Endosomas/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
2.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34494097

RESUMEN

Lysosomal signaling facilitates the migration of immune cells by releasing Ca2+ to activate the actin-based motor myosin II at the cell rear. However, how the actomyosin cytoskeleton physically associates to lysosomes is unknown. We have previously identified myosin II as a direct interactor of Rab7b, a small GTPase that mediates the transport from late endosomes/lysosomes to the trans-Golgi network (TGN). Here, we show that Rab7b regulates the migration of dendritic cells (DCs) in one- and three-dimensional environments. DCs are immune sentinels that transport antigens from peripheral tissues to lymph nodes to activate T lymphocytes and initiate adaptive immune responses. We found that the lack of Rab7b reduces myosin II light chain phosphorylation and the activation of the transcription factor EB (TFEB), which controls lysosomal signaling and is required for fast DC migration. Furthermore, we demonstrate that Rab7b interacts with the lysosomal Ca2+ channel TRPML1 (also known as MCOLN1), enabling the local activation of myosin II at the cell rear. Taken together, our findings identify Rab7b as the missing physical link between lysosomes and the actomyosin cytoskeleton, allowing control of immune cell migration through lysosomal signaling. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Actomiosina , Lisosomas , Citoesqueleto , Células Dendríticas , Endosomas , Humanos
3.
J Cell Sci ; 133(10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32265275

RESUMEN

Despite progress made in confocal microscopy, even fast systems still have insufficient temporal resolution for detailed live-cell volume imaging, such as tracking rapid movement of membrane vesicles in three-dimensional space. Depending on the shortfall, this may result in undersampling and/or motion artifacts that ultimately limit the quality of the imaging data. By sacrificing detailed information in the Z-direction, we propose a new imaging modality that involves capturing fast 'projections' from the field of depth and shortens imaging time by approximately an order of magnitude as compared to standard volumetric confocal imaging. With faster imaging, radiation exposure to the sample is reduced, resulting in less fluorophore photobleaching and potential photodamage. The implementation minimally requires two synchronized control signals that drive a piezo stage and trigger the camera exposure. The device generating the signals has been tested on spinning disk confocal and instant structured-illumination-microscopy (iSIM) microscopes. Our calibration images show that the approach provides highly repeatable and stable imaging conditions that enable photometric measurements of the acquired data, in both standard live imaging and super-resolution modes.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Colorantes Fluorescentes , Iluminación , Microscopía Confocal , Fotoblanqueo
4.
J Cell Sci ; 133(19)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907852

RESUMEN

The invariant chain (Ii, also known as CD74) is a multifunctional regulator of adaptive immune responses and is responsible for sorting major histocompatibility complex class I and class II (MHCI and MHCII, respectively) molecules, as well as other Ii-associated molecules, to a specific endosomal pathway. When Ii is expressed, endosomal maturation and proteolytic degradation of proteins are delayed and, in non-antigen presenting cells, the endosomal size increases, but the molecular mechanisms underlying this are not known. We identified that a SNARE, Vti1b, is essential for regulating these Ii-induced effects. Vti1b binds to Ii and is localized at the contact sites of fusing Ii-positive endosomes. Furthermore, truncated Ii lacking the cytoplasmic tail, which is not internalized from the plasma membrane, relocates Vti1b to the plasma membrane. Knockout of Ii in an antigen-presenting cell line was found to speed up endosomal maturation, whereas silencing of Vti1b inhibits the Ii-induced maturation delay. Our results suggest that Ii, by interacting with the SNARE Vti1b in antigen-presenting cells, directs specific Ii-associated SNARE-mediated fusion in the early part of the endosomal pathway that leads to a slower endosomal maturation for efficient antigen processing and MHC antigen loading.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Proteínas SNARE , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Endosomas , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Ratas , Proteínas SNARE/genética
5.
J Cell Sci ; 131(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30111580

RESUMEN

Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/enzimología , Endosomas/genética , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/enzimología , Aparato de Golgi/genética , Humanos , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
6.
Cell Mol Life Sci ; 76(13): 2593-2614, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30830239

RESUMEN

Rab proteins are master regulators of intracellular membrane trafficking, but they also contribute to cell division, signaling, polarization, and migration. The majority of the works describing the mechanisms used by Rab proteins to regulate cell motility involve intracellular transport of key molecules important for migration. Interestingly, a few studies indicate that Rabs can modulate the activity of Rho GTPases, important regulators for the cytoskeleton rearrangements, but the mechanisms behind this crosstalk are still poorly understood. In this work, we identify Rab6 as a negative regulator of cell migration in vitro and in vivo. We show that the loss of Rab6 promotes formation of actin protrusions and influences actomyosin dynamics by upregulating Cdc42 activity and downregulating myosin II phosphorylation. We further provide the molecular mechanism behind this regulation demonstrating that Rab6 interacts with both Cdc42 and Trio, a GEF for Cdc42. In sum, our results uncover a mechanism used by Rab proteins to ensure spatial regulation of Rho GTPase activity for coordination of cytoskeleton rearrangements required in migrating cells.


Asunto(s)
Movimiento Celular , Embrión no Mamífero/patología , Neoplasias/patología , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Citoesqueleto de Actina , Animales , Embrión no Mamífero/metabolismo , Humanos , Microtúbulos , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Transporte de Proteínas , Transducción de Señal , Células Tumorales Cultivadas , Pez Cebra , Proteína de Unión al GTP cdc42/genética , Proteínas de Unión al GTP rab/genética
7.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 781-793, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29505800

RESUMEN

The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22 N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/genética , Homeostasis/genética , Proteínas de Unión al GTP rab/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas Nogo/genética , Unión Proteica , ARN Interferente Pequeño/genética , Ácido Tauroquenodesoxicólico/farmacología , Proteínas de Transporte Vesicular/genética , Proteínas de Unión a GTP rab7
8.
Immunity ; 33(4): 583-96, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20933442

RESUMEN

Toll-like receptor 4 (TLR4) is indispensable for recognition of Gram-negative bacteria. We described a trafficking pathway for TLR4 from the endocytic recycling compartment (ERC) to E. coli phagosomes. We found a prominent colocalization between TLR4 and the small GTPase Rab11a in the ERC, and Rab11a was involved in the recruitment of TLR4 to phagosomes in a process requiring TLR4 signaling. Also, Toll-receptor-associated molecule (TRAM) and interferon regulatory factor-3 (IRF3) localized to E. coli phagosomes and internalization of E. coli was required for a robust interferon-ß induction. Suppression of Rab11a reduced TLR4 in the ERC and on phagosomes leading to inhibition of the IRF3 signaling pathway induced by E. coli, whereas activation of the transcription factor NF-κB was unaffected. Moreover, Rab11a silencing reduced the amount of TRAM on phagosomes. Thus, Rab11a is an important regulator of TLR4 and TRAM transport to E. coli phagosomes thereby controlling IRF3 activation from this compartment.


Asunto(s)
Fagosomas/metabolismo , Receptor Toll-Like 4/fisiología , Proteínas de Unión al GTP rab/fisiología , Endocitosis , Escherichia coli/inmunología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Fagocitosis , Transducción de Señal , Staphylococcus aureus/inmunología
9.
EMBO Rep ; 18(10): 1727-1739, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835545

RESUMEN

Autophagy (macroautophagy) is a highly conserved eukaryotic degradation pathway in which cytosolic components and organelles are sequestered by specialized autophagic membranes and degraded through the lysosomal system. The autophagic pathway maintains basal cellular homeostasis and helps cells adapt during stress; thus, defects in autophagy can cause detrimental effects. It is therefore crucial that autophagy is properly regulated. In this study, we show that the cysteine protease Atg4B, a key enzyme in autophagy that cleaves LC3, is an interactor of the small GTPase Rab7b. Indeed, Atg4B interacts and co-localizes with Rab7b on vesicles. Depletion of Rab7b increases autophagic flux as indicated by the increased size of autophagic structures as well as the magnitude of macroautophagic sequestration and degradation. Importantly, we demonstrate that Rab7b regulates LC3 processing by modulating Atg4B activity. Taken together, our findings reveal Rab7b as a novel negative regulator of autophagy through its interaction with Atg4B.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Cisteína Endopeptidasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Cisteína Endopeptidasas/genética , Regulación de la Expresión Génica , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al GTP rab/deficiencia , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
10.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 367-381, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27888097

RESUMEN

Rab7a, a small GTPase of the Rab family, is localized to late endosomes and controls late endocytic trafficking. The discovery of several Rab7a interacting proteins revealed that Rab7a function is closely connected to cytoskeletal elements. Indeed, Rab7a recruits on vesicles RILP and FYCO that are responsible for the movement of Rab7a-positive vesicles and/or organelles on microtubule tracks, but also directly interacts with Rac1, a fundamental regulator of actin cytoskeleton, and with peripherin and vimentin, two intermediate filament proteins. Considering all these interactions and, in particular, the fact that Rac1 and vimentin are key factors for cellular motility, we investigated a possible role of Rab7a in cell migration. We show here that Rab7a is needed for cell migration as Rab7a depletion causes slower migration of NCI H1299 cells affecting cell velocity and directness. Rab7a depletion negatively affects adhesion and spreading onto fibronectin substrates, altering ß1-integrin activation, localization and intracellular trafficking, and myosin X localization. In fact, Rab7a-depleted cells show 40% less filopodia and active integrin accumulates at the leading edge of migrating cells. Furthermore, Rab7a depletion decreases the amount of active Rac1 but not its abundance and reduces the number of cells with vimentin filaments facing the wound, indicating that Rab7a has a role in the orientation of vimentin filaments during migration. In conclusion, our results demonstrate a key role of Rab7a in the regulation of different aspects of cell migration.


Asunto(s)
Movimiento Celular/fisiología , Vimentina/fisiología , Proteínas de Unión al GTP rab/fisiología , Proteína de Unión al GTP rac1/fisiología , Línea Celular Tumoral , Humanos , Cicatrización de Heridas , Proteínas de Unión a GTP rab7
11.
Traffic ; 17(3): 211-29, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26663757

RESUMEN

Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.


Asunto(s)
Endosomas/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Perros , Endocitosis , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Glicoproteínas de Membrana/metabolismo , Mutación Missense , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Red trans-Golgi/metabolismo
12.
J Cell Sci ; 129(21): 3971-3982, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802132

RESUMEN

The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.


Asunto(s)
Endosomas/metabolismo , Aparato de Golgi/metabolismo , Animales , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
14.
Cancer Immunol Immunother ; 67(4): 525-536, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29248956

RESUMEN

Adoptive cell therapy with T-cell receptor (TCR)-engineered T cells represents a powerful method to redirect the immune system against tumours. However, although TCR recognition is restricted to a specific peptide-MHC (pMHC) complex, increasing numbers of reports have shown cross-reactivity and off-target effects with severe consequences for the patients. This demands further development of strategies to validate TCR safety prior to clinical use. We reasoned that the desired TCR signalling depends on correct pMHC recognition on the outside and a restricted clustering on the inside of the cell. Since the majority of the adverse events are due to TCR recognition of the wrong target, we tested if blocking the signalling would affect the binding. By over-expressing the c-SRC kinase (CSK), a negative regulator of LCK, in redirected T cells, we showed that peripheral blood T cells inhibited anti-CD3/anti-CD28-induced phosphorylation of ERK, whereas TCR proximal signalling was not affected. Similarly, overexpression of CSK together with a therapeutic TCR prevented pMHC-induced ERK phosphorylation. Downstream effector functions were also almost completely blocked, including pMHC-induced IL-2 release, degranulation and, most importantly, target cell killing. The lack of effector functions contrasted with the unaffected TCR expression, pMHC recognition, and membrane exchange activity (trogocytosis). Therefore, co-expression of CSK with a therapeutic TCR did not compromise target recognition and binding, but rendered T cells incapable of executing their effector functions. Consequently, we named these redirected T cells "dummy T cells" and propose to use them for safety validation of new TCRs prior to therapy.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Familia-src Quinasas/metabolismo , Proteína Tirosina Quinasa CSK , Muerte Celular , Células Cultivadas , Humanos , Fosforilación , Unión Proteica , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Linfocitos T/citología , Familia-src Quinasas/genética
15.
FASEB J ; 31(4): 1650-1667, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119397

RESUMEN

Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.


Asunto(s)
Endosomas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Endosomas/virología , Antígenos HLA-D/metabolismo , Antígenos HLA-DR/metabolismo , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas , Tetraspanina 30/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas de Unión al GTP rab5/metabolismo
16.
J Cell Sci ; 127(Pt 22): 4927-39, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25217632

RESUMEN

Rab proteins are small GTPases that regulate transport between the different compartments of the endomembrane system in eukaryotic cells. Here, we show that Rab7b, a Rab that controls the transport between late endosomes and the trans Golgi network, interacts directly with myosin II. We illustrate the functional relevance of this interaction, demonstrating that myosin II mediates the transport of Rab7b endosomes, as Rab7b dynamics are strongly affected after myosin II depletion or inhibition. We also demonstrate that a member of the Rab family regulates actin remodeling and, consequently, influences cell adhesion, polarization and migration. We find the molecular mechanism by which Rab7b influences stress fiber formation - through controlling the activation status of the small GTPase RhoA and therefore influencing myosin light chain phosphorylation. Our findings reveal a newly identified role for Rab proteins outside of their canonical role in intracellular trafficking, identifying Rab7b as a coordinator of cytoskeletal organization.


Asunto(s)
Actomiosina/metabolismo , Movimiento Celular/fisiología , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Fosforilación , Transporte de Proteínas , Transfección , Proteínas de Unión a GTP rab7
17.
Eur J Immunol ; 44(3): 774-84, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24293164

RESUMEN

Protective T-cell responses depend on efficient presentation of antigen (Ag) in the context of major histocompatibility complex class I (MHCI) and class II (MHCII) molecules. Invariant chain (Ii) serves as a chaperone for MHCII molecules and mediates trafficking to the endosomal pathway. The genetic exchange of the class II-associated Ii peptide (CLIP) with antigenic peptides has proven efficient for loading of MHCII and activation of specific CD4(+) T cells. Here, we investigated if Ii could similarly activate human CD8(+) T cells when used as a vehicle for cytotoxic T-cell (CTL) epitopes. The results show that wild type Ii, and Ii in which CLIP was replaced by known CTL epitopes from the cancer targets MART-1 or CD20, coprecipitated with HLA-A*02:01 and mediated colocalization in the endosomal pathway. Furthermore, HLA-A*02:01-positive cells expressing CLIP-replaced Ii efficiently activated Ag-specific CD8(+) T cells in a TAP- and proteasome-independent manner. Finally, dendritic cells transfected with mRNA encoding IiMART-1 or IiCD20 primed naïve CD8(+) T cells. The results show that Ii carrying antigenic peptides in the CLIP region can promote efficient presentation of the epitopes to CTLs independently of the classical MHCI peptide loading machinery, facilitating novel vaccination strategies against cancer.


Asunto(s)
Presentación de Antígeno , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Activación de Linfocitos , Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología , Antígenos/química , Antígenos/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endosomas/metabolismo , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas
18.
Traffic ; 13(9): 1273-85, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22708738

RESUMEN

The small GTPase Rab7b localizes to late endosomes-lysosomes and to the Golgi, regulating the transport between these two intracellular compartments. We have recently demonstrated that depletion of Rab7b causes missorting of the cation-independent mannose 6-phosphate receptor (CI-MPR), suggesting that Rab7b may control the trafficking of this receptor. Here we further investigated the function of this small GTPase with special attention to its role in the trafficking of sorting receptors and dynamics in living cells. Using endosome-to-Golgi retrieval assays we show that Rab7b is involved not only in CI-MPR transport but also in the MPRs independent pathway. Indeed, we find that it regulates and interacts with sortilin, a mannose 6-phosphate-independent sorting receptor. CI-MPR and sortilin are sorted from the trans-Golgi network (TGN) in tubular structures and the expression of Rab7b mutants or its silencing reduces CI-MPR and sortilin tubulation. In addition, the constitutively active mutant Rab7b Q67L impairs the formation of carriers from TGN. Collectively, our observations show for the first time that Rab7b is required for transport from endosomes to the TGN, not only of the CI-MPR, but also of sortilin, and that alterations in this transport result in impaired carrier formation from TGN.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Células HeLa , Humanos , Mutación Missense , Dominios y Motivos de Interacción de Proteínas/genética , Transporte de Proteínas , ARN Interferente Pequeño , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7 , Red trans-Golgi/metabolismo
19.
J Cell Sci ; 125(Pt 8): 1910-9, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22357949

RESUMEN

Organelles in the endocytic pathway interact and communicate through the crucial mechanisms of fusion and fission. However, any specific link between fusion and fission has not yet been determined. To study the endosomal interactions with high spatial and temporal resolution, we enlarged the endosomes by two mechanistically different methods: by expression of the MHC-class-II-associated chaperone invariant chain (Ii; or CD74) or Rab5, both of which increased the fusion rate of early endosomes and resulted in enlarged endosomes. Fast homotypic fusions were studied, and immediately after the fusion a highly active and specific tubule formation and fission was observed. These explosive tubule formations following fusion seemed to be a direct effect of fusion. The tubule formations were dependent on microtubule interactions, and specifically controlled by Kif16b and dynein. Our results show that fusion of endosomes is a rapid process that destabilizes the membrane and instantly induces molecular-motor-driven tubule formation and fission.


Asunto(s)
Dineínas/metabolismo , Endosomas/metabolismo , Cinesinas/metabolismo , Fusión de Membrana , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Línea Celular , Perros , Endocitosis , Humanos , Proteínas de Unión al GTP rab5/metabolismo
20.
Eur J Immunol ; 43(10): 2577-87, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23839948

RESUMEN

An enormous number of B cells with different B-cell receptors (BCRs) are continuously produced in the bone marrow. BCRs are further diversified during the germinal center reaction. Due to extensive recirculation, B cells with mutually binding BCR are likely to meet in lymphoid organs. We have addressed possible outcomes of such an encounter in vitro. B lymphoma cells were transfected with complementary BCR, one transfectant expressing an Idiotype⁺ (Id⁺) BCR and the other an anti-Id BCR. To exclude confounding effects of secreted Ig, the transfected B lymphoma cells only expressed membrane IgD. Coincubation of paired Id⁺/anti-Id lymphoma cells results in conjugate formation, signaling, activation of Caspase 3/7, and apoptosis of at least one of the two cells in the pair. Our data provide suggestive evidence for a mechanism whereby the B-cell compartment is partly purged of B cells with complementary BCRs.


Asunto(s)
Linfocitos B/inmunología , Tolerancia Inmunológica , Inmunoglobulina D/metabolismo , Región Variable de Inmunoglobulina/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Anticuerpos Antiidiotipos/genética , Anticuerpos Antiidiotipos/metabolismo , Apoptosis/genética , Apoptosis/inmunología , Médula Ósea/inmunología , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Inmunoglobulina D/genética , Activación de Linfocitos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/inmunología , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA