Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochem Biophys Res Commun ; 733: 150434, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39068818

RESUMEN

Ca2+-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca2+-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca2+ elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders. However, the link between KCa3.1 channels and CP-AMPARs is poorly understood, and their potential interaction in epilepsy remains unclear. Here, we address this issue by overexpressing the KCNN4 gene, which encodes the KCa3.1 channel, using patch clamp, imaging, and channel blockers in an in vitro model of epilepsy in neuronal culture. We show that KCNN4 overexpression causes strong hyperpolarization and substantial silencing of neurons during epileptiform activity events, which also prevents KCNN4-positive neurons from firing action potentials (APs) during experimentally induced status epilepticus. Intracellular blocker application experiments showed that the amplitude of hyperpolarization was strongly dependent on CP-AMPARs, but not on NMDA receptors. Taken together, our data strongly suggest that subthreshold Ca2+ elevation produced by CP-AMPARs can trigger KCa3.1 channels to hyperpolarize neurons and protect them from seizures.

2.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175876

RESUMEN

Proteasomes degrade most intracellular proteins. Several different forms of proteasomes are known. Little is known about the role of specific proteasome forms in the central nervous system (CNS). Inhibitors targeting different proteasome forms are used in clinical practice and were shown to modulate long-term potentiation (LTP) in hippocampal slices of untreated animals. Here, to address the role of non-constitutive proteasomes in hippocampal synaptic plasticity and reveal the consequences of their continuous inhibition, we studied the effect of chronic administration of the non-constitutive proteasome inhibitor ONX-0914 on the LTP induced by two different protocols: tetanic stimulation and theta-burst stimulation (TBS). Both the tetanus- and TBS-evoked potentiation contribute to the different forms of hippocampal-dependent memory and learning. Field-excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from control animals and animals treated with DMSO or ONX-0914 were compared. LTP induced by the TBS was not affected by ONX-0914 administration; however, chronic injections of ONX-0914 led to a decrease in fEPSP slopes after tetanic stimulation. The observed effects correlated with differential expression of genes involved in synaptic plasticity, glutaminergic synapse, and synaptic signaling. Obtained results indicate that non-constitutive proteasomes are likely involved in the tetanus-evoked LTP, but not the LTP occurring after TBS, supporting the relevance and complexity of the role of specific proteasomes in synaptic plasticity, memory, and learning.


Asunto(s)
Potenciación a Largo Plazo , Tétanos , Ratas , Ratones , Animales , Inhibidores de Proteasoma/farmacología , Ratas Sprague-Dawley , Complejo de la Endopetidasa Proteasomal/metabolismo , Tétanos/metabolismo , Hipocampo/metabolismo , Expresión Génica , Glutamatos/metabolismo , Estimulación Eléctrica
3.
Biochemistry (Mosc) ; 87(11): 1243-1251, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36509718

RESUMEN

Memory formation is a complex process involving changes in the synaptic activity and gene expression encoding the insulin-like growth factors. We analyzed changes in the expression of genes encoding the insulin/insulin-like growth factors' proteins at the early period of learning in the CA1 region and dentate gyrus of the dorsal and ventral hippocampus in mice 1 hour after presentation of a new context (contextual fear conditioning) with and without negative reinforcement. It was found that in addition to changes in the expression of immediate early genes c-Fos (in all studied hippocampal fields) and Arc (in dorsal and ventral CA1, as well as in dorsal dentate gyrus), exposure to a new context significantly altered expression of the insulin receptor substrate 2 gene (Irs2) in dorsal CA1 and ventral dentate gyrus irrespectively of the negative reinforcement, which suggests participation of the insulin/IGF system in the early stages of neural activation during learning.


Asunto(s)
Hipocampo , Somatomedinas , Ratones , Animales , Hipocampo/fisiología , Miedo/fisiología , Aprendizaje , Insulina/genética , Proteínas Sustrato del Receptor de Insulina/genética
4.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233148

RESUMEN

The search for strategies for strengthening the synaptic efficiency in Aß25-35-treated slices is a challenge for the compensation of amyloidosis-related pathologies. Here, we used the recording of field excitatory postsynaptic potentials (fEPSPs), nitric oxide (NO) imaging, measurements of serine/threonine protein phosphatase (STPP) activity, and the detection of the functional mitochondrial parameters in suspension of brain mitochondria to study the Aß25-35-associated signaling in the hippocampus. Aß25-35 aggregates shifted the kinase-phosphatase balance during the long-term potentiation (LTP) induction in the enhancement of STPP activity. The PP1/PP2A inhibitor, okadaic acid, but not the PP2B blocker, cyclosporin A, prevented Aß25-35-dependent LTP suppression for both simultaneous and delayed enzyme blockade protocols. STPP activity in the Aß25-35-treated slices was upregulated, which is reverted relative to the control values in the presence of PP1/PP2A but not in the presence of the PP2B blocker. A selective inhibitor of stress-induced PP1α, sephin1, but not of the PP2A blocker, cantharidin, is crucial for Aß25-35-mediated LTP suppression prevention. A mitochondrial Na+/Ca2+ exchanger (mNCX) blocker, CGP37157, also attenuated the Aß25-35-induced LTP decline. Aß25-35 aggregates did not change the mitochondrial transmembrane potential or reactive oxygen species (ROS) production but affected the ion transport and Ca2+-dependent swelling of organelles. The staining of hippocampal slices with NO-sensitive fluorescence dye, DAF-FM, showed stimulation of the NO production in the Aß25-35-pretreated slices at the dendrite-containing regions of CA1 and CA3, in the dentate gyrus (DG), and in the CA1/DG somata. NO scavenger, PTIO, or nNOS blockade by selective inhibitor 3Br-7NI partly restored the Aß25-35-induced LTP decline. Thus, hippocampal NO production could be another marker for the impairment of synaptic plasticity in amyloidosis-related states, and kinase-phosphatase balance management could be a promising strategy for the compensation of Aß25-35-driven deteriorations.


Asunto(s)
Amiloidosis , Potenciación a Largo Plazo , Proteínas Amiloidogénicas , Cantaridina , Ciclosporina , Hipocampo/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Mitocondrias , Óxido Nítrico , Ácido Ocadaico/farmacología , Fosfoproteínas Fosfatasas , Especies Reactivas de Oxígeno , Serina , Intercambiador de Sodio-Calcio , Treonina
5.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673334

RESUMEN

A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer's disease, Huntington's disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.


Asunto(s)
Regulación de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/biosíntesis , Memoria , Fármacos Neuroprotectores/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Ratones , Ratas , Receptor IGF Tipo 2/metabolismo
6.
Int J Mol Sci ; 22(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064311

RESUMEN

Dephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP). Established protein phosphatase 2B (PP2B, calcineurin) inhibitor cyclosporin A prevented the LTP early phase (E-LTP) decline produced by pretreatment of hippocampal slices with cycloheximide or anisomycin. For the first time, we directly measured serine/threonine phosphatase activity during E-LTP, and its significant increase in PSB-treated slices was demonstrated. Nitric oxide (NO) donor SNAP also heightened phosphatase activity in the same manner as PSB, and simultaneous application of anisomycin + SNAP had no synergistic effect. Direct measurement of the NO production in hippocampal slices by the NO-specific fluorescent probe DAF-FM revealed that PSBs strongly stimulate the NO concentration in all studied brain areas: CA1, CA3, and dentate gyrus (DG). Cyclosporin A fully abolished the PSB-induced NO production in the hippocampus, suggesting a close relationship between nNOS and PP2B activity. Surprisingly, cyclosporin A alone impaired short-term plasticity in CA1 by decreasing paired-pulse facilitation, which suggests bi-directionality of the influences of PP2B in the hippocampus. In conclusion, we proposed a minimal model of signaling events that occur during LTP induction in normal conditions and the PSB-treated slices.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Calcineurina/genética , Potenciación a Largo Plazo/genética , Potenciales Sinápticos/genética , Animales , Anisomicina/farmacología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , Cicloheximida/farmacología , Ciclosporina/farmacología , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Regulación de la Expresión Génica , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Microtomía , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Óxido Nítrico/química , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Wistar , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacología , Potenciales Sinápticos/efectos de los fármacos , Técnicas de Cultivo de Tejidos
7.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024149

RESUMEN

Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors-the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors' surface expression.


Asunto(s)
Encéfalo/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Receptores AMPA/metabolismo , Animales , Humanos , Plasticidad Neuronal , Neuronas/citología
8.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035721

RESUMEN

Protein kinase Mζ is considered important for memory formation and maintenance in different species, including invertebrates. PKMζ participates in multiple molecular pathways in neurons, regulating translation initiation rate, AMPA receptors turnover, synaptic scaffolding assembly, and other processes. Here, for the first time, we established the sequence of mRNA encoding PKMζ homolog in land snail Helix lucorum. We annotated important features of this mRNA: domains, putative capping sites, translation starts, and splicing sites. We discovered that this mRNA has at least two isoforms, and one of them lacks sequence encoding C1 domain. C1 deletion may be unique for snail because it has not been previously found in other species. We performed behavioral experiments with snails, measured expression levels of identified isoforms, and confirmed that their expression correlates with one type of learning.


Asunto(s)
Aprendizaje , Proteína Quinasa C/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Isoenzimas , Modelos Biológicos , Familia de Multigenes , Dominios y Motivos de Interacción de Proteínas , Proteína Quinasa C/química , Proteína Quinasa C/genética , Sitios de Empalme de ARN , Relación Estructura-Actividad , Transcripción Genética
9.
Eur J Neurosci ; 45(5): 643-647, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27987370

RESUMEN

It is well-known that the reactivation of consolidated fear memory under boundary conditions of novelty and protein synthesis blockade results in an impairment of memory, suggesting that the reactivated memory is destabilized and requires synthesis of new proteins for reconsolidation. We tested the hypothesis of nitric oxide (NO) involvement in memory destabilization during the reconsolidation process in rats using memory reactivation under different conditions. We report that administration of NO-synthase selective blockers 3-Br-7-NI or ARL in the conditions of reactivation of memory under a protein synthesis blockade prevented destabilization of fear memory to the conditioned stimulus. Obtained results support the role of NO signaling pathway in the destabilization of existing fear memory triggered by reactivation, and demonstrate that the disruption of this pathway during memory reconsolidation may prevent changes in long-term memory.


Asunto(s)
Señales (Psicología) , Consolidación de la Memoria/efectos de los fármacos , Óxido Nítrico/metabolismo , Amidinas/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Miedo , Indazoles/farmacología , Masculino , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Ratas Wistar
10.
Cell Mol Neurobiol ; 37(5): 763-769, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27495161

RESUMEN

Nitric oxide (NO) is involved in many neuronal functions such as neuromodulation and intracellular signaling. Recent studies have demonstrated that nitric oxide is involved in regulation of proteasomal protein degradation. However, its role in neuronal protein degradation still remains unclear. In our study, we investigated the influence of endogenous nitric oxide production in this process. We have shown that nitric oxide synthase blockade prevents decline of the UbG76V-GFP fluorescence (GFP-based proteasomal protein degradation reporter) in neuronal processes of the cultured hippocampal neurons. It suggests that nitric oxide may regulate ubiquitin-dependent proteasomal protein degradation in neurons. Also, we have confirmed that the NO synthesis blockade alone significantly impairs long-term potentiation, and demonstrated for the first time that simultaneous blockade of the NO and proteins synthesis leads to the long-term potentiation amplitude rescue to the control values. Obtained results suggest that nitric oxide is involved in the protein degradation in proteasomes in physiological conditions.


Asunto(s)
Neuronas/metabolismo , Óxido Nítrico/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Óxido Nítrico/biosíntesis , Biosíntesis de Proteínas/efectos de los fármacos , Ratas Wistar , Factores de Tiempo , Ubiquitina/metabolismo
11.
Int J Mol Sci ; 18(10)2017 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-29065505

RESUMEN

Compared to other types of cells, neurons express the largest number of diverse mRNAs, including neuron-specific ones. This mRNA diversity is required for neuronal function, memory storage, maintenance and retrieval. Regulation of translation in neurons is very complicated and involves various proteins. Some proteins, implementing translational control in other cell types, are used by neurons for synaptic plasticity. In this review, we discuss the neuron-specific activity of four kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), general control nonderepressible 2 kinase (GCN2), and heme-reguated eIF2α kinase (HRI), the substrate for which is α-subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α is necessary for the cell during stress conditions, such as lack of amino acids, energy stress or viral infection. We propose that, during memory formation, neurons use some mechanisms similar to those involved in the cellular stress. The four eIF2α kinases regulate translation of certain mRNAs containing upstream open reading frames (uORFs). These mRNAs encode proteins involved in the processes of long-term potentiation (LTP) or long-term depression (LTD). The review examines some neuronal proteins for which translation regulation by eIF2 was suggested and checked experimentally. Of such proteins, we pay close attention to protein kinase Mζ, which is involved in memory storage and regulated at the translational level.


Asunto(s)
Regulación de la Expresión Génica , Plasticidad Neuronal/genética , Neuronas/enzimología , Biosíntesis de Proteínas , eIF-2 Quinasa/metabolismo , Animales , Humanos , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico
12.
Front Synaptic Neurosci ; 13: 656377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149389

RESUMEN

The mechanisms of synaptic plasticity differ in distinct local circuits. In the CA1 region of the hippocampus, the mechanisms of long-term potentiation (LTP) at apical dendrites in stratum radiatum and basal dendrites in stratum oriens involve different molecular cascades. For instance, participation of nitric oxide in LTP induction was shown to be necessary only for apical dendrites. This phenomenon may play a key role in information processing in CA1, and one of the reasons for this difference may be differing synaptic characteristics in these regions. Here, we compared the synaptic responses to stimulation of apical and basal dendrites of CA1 pyramidal neurons and found a difference in the current-voltage characteristics of these inputs, which is presumably due to a distinct contribution of GluA2-lacking AMPA receptors to synaptic transmission. In addition, we obtained data that indicate the presence of these receptors in pyramidal dendrites in both stratum radiatum and stratum oriens. We also demonstrated that inhibition of NO synthase reduced the contribution of GluA2-lacking AMPA receptors at apical but not basal dendrites, and inhibition of soluble guanylate cyclase did not affect this phenomenon.

13.
Mol Neurobiol ; 58(5): 2322-2341, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33417228

RESUMEN

Alzheimer's disease (AD) is the most common cause of senile dementia and one of the greatest medical, social, and economic challenges. According to a dominant theory, amyloid-ß (Aß) peptide is a key AD pathogenic factor. Aß-soluble species interfere with synaptic functions, aggregate gradually, form plaques, and trigger neurodegeneration. The AD-associated pathology affects numerous systems, though the substantial loss of cholinergic neurons and α7 nicotinic receptors (α7AChR) is critical for the gradual cognitive decline. Aß binds to α7AChR under various experimental settings; nevertheless, the functional significance of this interaction is ambiguous. Whereas the capability of low Aß concentrations to activate α7AChR is functionally beneficial, extensive brain exposure to high Aß concentrations diminishes α7AChR activity, contributes to the cholinergic deficits that characterize AD. Aß and snake α-neurotoxins competitively bind to α7AChR. Accordingly, we designed a chemically modified α-cobratoxin (mToxin) to inhibit the interaction between Aß and α7AChR. Subsequently, we examined mToxin in a set of original in silico, in vitro, ex vivo experiments, and in a murine AD model. We report that mToxin reversibly inhibits α7AChR, though it attenuates Aß-induced synaptic transmission abnormalities, and upregulates pathways supporting long-term potentiation and reducing apoptosis. Remarkably, mToxin demonstrates no toxicity in brain slices and mice. Moreover, its chronic intracerebroventricular administration improves memory in AD-model animals. Our results point to unique mToxin neuroprotective properties, which might be tailored for the treatment of AD. Our methodology bridges the gaps in understanding Aß-α7AChR interaction and represents a promising direction for further investigations and clinical development.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Neurotoxinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Modelos Teóricos , Neurotoxinas/uso terapéutico , Unión Proteica/efectos de los fármacos
14.
J Biophotonics ; 13(12): e202000297, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32881362

RESUMEN

In this work, a thorough analysis of hyperosmotic agents for the immersion optical clearing (IOC) in terahertz (THz) range was performed. It was aimed at the selection of agents for the efficient enhancement of penetration depth of THz waves into biological tissues. Pulsed spectroscopy in the frequency range of 0.1 to 2.5 THz was applied for investigation of the optical properties of common IOC agents. Using the collimated transmission spectroscopy in visible range, binary diffusion coefficients of tissue water and agent in ex vivo rat brain tissue were measured. IOC agents were objectively compared using two-dimensional nomogram, accounting for their THz-wave absorption coefficients and binary diffusion coefficients. The results of this study demonstrate an interplay between the penetration depth enhancement and the diffusion rate and allow for pointing out glycerol as an optimal agent among the considered ones for particular applications in THz biophotonics.


Asunto(s)
Glicerol , Inmersión , Animales , Encéfalo/diagnóstico por imagen , Difusión , Ratas , Agua
15.
Neuropharmacology ; 146: 276-288, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540927

RESUMEN

For several decades, the ability of protein synthesis inhibitors (PSI) to suppress the long-term potentiation (LTP) of hippocampal responses is known. It is considered that mechanisms of such impairment are related to a cessation of translation and a delayed depletion of the protein pool required for maintenance of synaptic plasticity. The present study demonstrates that cycloheximide or anisomycin applications reduce amplitudes of the field excitatory postsynaptic potentials as well as the presynaptically mediated form of plasticity, the paired-pulse facilitation after LTP induction in neurons of the CA1 area of hippocampus. We showed that nitric oxide signaling could be one of the pathways that cause the LTP decrease induced by cycloheximide or anisomycin. Inhibitor of the NO synthase, L-NNA or the NO scavenger, PTIO, rescued the late-phase LTP and restored the paired-pulse facilitation up to the control levels. For the first time we have directly measured the nitric oxide production induced by application of the translation blockers in hippocampal neurons using the NO-sensitive dye DAF-FM. Inhibitory analysis demonstrated that changes during protein synthesis blockade downstream the NO signaling cascade are cGMP-independent and apparently are implemented through degradation of target proteins. Prolonged application of the NO donor SNAP impaired the LTP maintenance in the same manner as PSI.


Asunto(s)
Anisomicina/farmacocinética , Cicloheximida/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Óxido Nítrico/biosíntesis , Inhibidores de la Síntesis de la Proteína/farmacología , Animales , Región CA1 Hipocampal , Hipocampo/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar
16.
Front Cell Neurosci ; 11: 28, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261059

RESUMEN

The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs). Experimental results support this idea, however mechanisms of fast onset of APs in cortical neurons remain elusive. Studies in neuronal cultures, that are allowing for accurate control over conditions of growth and microenvironment during the development of neurons and provide better access to the spike initiation zone, may help to shed light on mechanisms of AP generation and encoding. Here we characterize properties of AP encoding in neocortical neurons grown for 11-25 days in culture. We show that encoding of high frequencies improves upon culture maturation, which is accompanied by the development of passive electrophysiological properties and AP generation. The onset of APs becomes faster with culture maturation. Statistical analysis using correlations and linear model approaches identified the onset dynamics of APs as a major predictor of age-dependent changes of encoding. Encoding of high frequencies strongly correlated also with the input resistance of neurons. Finally, we show that maturation of encoding properties of neurons in cultures is similar to the maturation of encoding in neurons studied in slices. These results show that maturation of AP generators and encoding is, to a large extent, determined genetically and takes place even without normal micro-environment and activity of the whole brain in vivo. This establishes neuronal cultures as a valid experimental model for studying mechanisms of AP generation and encoding, and their maturation.

17.
Front Mol Neurosci ; 9: 103, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790092

RESUMEN

For protein synthesis that occurs locally in dendrites, the translational control mechanisms are much more important for neuronal functioning than the transcription levels. Here, we show that uORFs (upstream open reading frames) in the 5' untranslated region (5'UTR) play a critical role in regulation of the translation of protein kinase Mζ (PKMζ). Elimination of these uORFs activates translation of the reporter protein in vitro and in primary cultures of rat hippocampal neurons. Using cell-free translation systems, we demonstrate that translational initiation complexes are formed only on uORFs. Further, we address the mechanism of translational repression of PKMζ translation, by uORFs. We observed an increase in translation of the reporter protein under the control of PKMζ leader in neuronal culture during non-specific activation by picrotoxin. We also show that such a mechanism is similar to the mechanism seen in cell stress, as application of sodium arsenite to neuron cultures induced translation of mRNA carrying PKMζ 5'UTR similarly to picrotoxin activation. Therefore, we suppose that phosphorylation of eIF2a, like in cell stress, is a main regulator of PKMζ translation. Altogether, our findings considerably extend our understanding of the role of uORF in regulation of PKMζ translation in activated neurons, important at early stages of LTP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA