Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Neurosci ; 57(4): 607-618, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36656446

RESUMEN

Autism spectrum disorders (ASDs) are defined as a set of neurodevelopmental disorders and a lifelong condition. In mice, most of the studies focused on the developmental aspects of these diseases. In this paper, we examined the evolution of motor stereotypies through adulthood in the Shank3ΔC/ΔC mouse model of ASD, and their underlying striatal alterations, at 10 weeks, 20 weeks, and 40 weeks. We highlighted that motor stereotypies worsened at 40 weeks possibly carried by earlier striatal medium spiny neurons (MSN) alterations in GABAergic transmission and morphology. Moreover, we report that 20 weeks could be a critical time-point in the striatal-related ASD physiopathology, and we suggest that MSN alterations may not be the direct consequence of developmental issues, but rather be a consequence of other impairments occurring earlier.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Proteínas del Tejido Nervioso/metabolismo , Conducta Animal/fisiología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Proteínas de Microfilamentos
2.
Mol Psychiatry ; 24(2): 312-320, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29507372

RESUMEN

The hippocampus is the main locus for adult dentate gyrus (DG) neurogenesis. A number of studies have shown that aberrant DG neurogenesis correlates with many neuropsychiatric disorders, including drug addiction. Although clear causal relationships have been established between DG neurogenesis and memory dysfunction or mood-related disorders, evidence of the causal role of DG neurogenesis in drug-seeking behaviors has not been established. Here we assessed the role of new DG neurons in cocaine self-administration using an inducible transgenic approach that selectively depletes adult DG neurogenesis. Our results show that transgenic mice with decreased adult DG neurogenesis exhibit increased motivation to self-administer cocaine and a higher seeking response to cocaine-related cues. These results identify adult hippocampal neurogenesis as a key factor in vulnerability to cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Giro Dentado/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Animales , Cocaína/metabolismo , Señales (Psicología) , Hipocampo/fisiopatología , Masculino , Memoria/fisiología , Ratones , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas , Autoadministración
3.
Artículo en Inglés | MEDLINE | ID: mdl-38244714

RESUMEN

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized mainly by deficits in social communication and stereotyped and restricted behavior and interests with a male to female bias of 4.2/1. Social behavior in ASD animal models is commonly analyzed in males, and seldomly in females, using the widely implemented three-chambers test procedure. Here, we implemented a novel procedure, the Live Mouse Tracker (LMT), combining artificial intelligence, machine learning procedures and behavioral measures. We used it on mice that were prenatally exposed to valproic acid (VPA) (450 mg/kg) at embryonic day 12.5, a widely recognized and potent ASD model that we had previously extensively characterized. We focused on female mice offspring, in which social deficits have been rarely documented when using the 3-CT procedure. We recorded several parameters related to social behavior in these mice, continuously for three days in groups of four female mice. Comparisons were made on groups of 4 female mice with the same treatment (4 saline or 4 VPA) or with different treatments (3 saline and 1 VPA). We report that VPA females show several types of social deficits, which are different in nature and magnitude in relation with time. When VPA mice were placed in the LMT alongside saline mice, their social deficits showed significant improvement as early as 1 h from the start of the experiment, lasting up to 3 days throughout the duration of the experiment. Our findings suggest that ASD may be underdiagnosed in females. They also imply that ASD-related social deficits can be ameliorated by the presence of typical individuals.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Femenino , Masculino , Animales , Ratones , Humanos , Ácido Valproico/toxicidad , Inteligencia Artificial , Trastorno del Espectro Autista/inducido químicamente , Conducta Social , Estereotipo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Modelos Animales de Enfermedad , Conducta Animal
4.
NPJ Parkinsons Dis ; 9(1): 31, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859454

RESUMEN

Subtle cognitive impairment can occur early in the course of Parkinson's disease (PD) and may manifest under different forms of executive dysfunction such as impaired cognitive flexibility. The precise contribution of nigrostriatal dopaminergic neurodegeneration to these non-motor features of the disease is poorly known. Whether such cognitive impairment associated with the disease process may also predate and contribute to the development of neuropsychiatric side-effects following dopamine replacement therapy remains largely unknown. To address these issues, we investigated the respective contributions of nigrostriatal degeneration and chronic treatment with the dopamine D3-preferring agonist pramipexole on behavioral flexibility in a rat model of PD. Flexible, intermediate and inflexible rats were identified based on baseline assessment of behavioral flexibility using an operant set-shifting task. Nigrostriatal degeneration was induced by bilateral viral-mediated expression of A53T mutated human α-synuclein in the substantia nigra pars compacta and behavioral flexibility was assessed after induction of nigrostriatal degeneration, and during chronic pramipexole treatment. Nigrostriatal degeneration impaired behavioral flexibility in flexible but not in inflexible rats. Pramipexole induced a decrease of behavioral flexibility that was exacerbated in lesioned rats and in the most flexible individuals. Furthermore, the deficits induced by pramipexole in lesioned rats affected different components of the task between flexible and inflexible individuals. This study demonstrates that nigrostriatal degeneration and pramipexole unequally impair behavioral flexibility, suggesting that the susceptibility to develop non-motor impairments upon treatment initiation could primarily depend on premorbid differences in behavioral flexibility.

5.
Sci Rep ; 13(1): 11235, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433863

RESUMEN

Dietary supplementations with n-3 polyunsaturated fatty acid (PUFA) have been explored in autism spectrum disorder (ASD) but their efficiency and potential in ameliorating cardinal symptoms of the disease remain elusive. Here, we compared a n-3 long-chain (LC) PUFA dietary supplementation (n-3 supp) obtained from fatty fish with a n-3 PUFA precursor diet (n-3 bal) obtained from plant oils in the valproic acid (VPA, 450 mg/kg at E12.5) ASD mouse model starting from embryonic life, throughout lactation and until adulthood. Maternal and offspring behaviors were investigated as well as several VPA-induced ASD biological features: cerebellar Purkinje cell (PC) number, inflammatory markers, gut microbiota, and peripheral and brain PUFA composition. Developmental milestones were delayed in the n-3 supp group compared to the n-3 bal group in both sexes. Whatever the diet, VPA-exposed offspring did not show ASD characteristic alterations in social behavior, stereotypies, PC number, or gut microbiota dysbiosis while global activity, gait, peripheral and brain PUFA levels as well as cerebellar TNF-alpha levels were differentially altered by diet and treatment according to sex. The current study provides evidence of beneficial effects of n-3 PUFA based diets, including one without LCPUFAs, on preventing several behavioral and cellular symptoms related to ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ácidos Grasos Omega-3 , Femenino , Masculino , Animales , Ratones , Trastorno Autístico/inducido químicamente , Trastorno del Espectro Autista/inducido químicamente , Ácido Valproico/efectos adversos , Dieta , Ácidos Grasos Insaturados , Ácidos Grasos Omega-3/farmacología , Suplementos Dietéticos
6.
Biomedicines ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327343

RESUMEN

Treatment with dopamine agonists in Parkinson's disease (PD) is associated with debilitating neuropsychiatric side-effects characterized by impulsive and compulsive behaviors. The vulnerability to develop such impairments is thought to involve interactions between individual vulnerability traits, types of antiparkinsonian medications, and the neurodegenerative process. We investigated the effect of the dopamine D3/D2 agonist pramipexole (PPX) and selective nigrostriatal degeneration achieved by viral-mediated expression of alpha-synuclein on the expression of repetitive and compulsive-like behaviors in rats. In a task assessing spontaneous food hoarding behavior, PPX increased the time spent interacting with food pellets at the expense of hoarding. This disruption of hoarding behavior was identical in sham and lesioned rats. In an operant post-training signal attenuation task, the combination of nigrostriatal lesion and PPX decreased the number of completed trials and increased the number of uncompleted trials. The lesion led to an increased compulsive behavior after signal attenuation, and PPX shifted the overall behavioral output towards an increased proportion of compulsive lever-presses. Given the magnitude of the behavioral effects and the lack of strong interaction between PPX and nigral degeneration, these results suggest that extra-nigral pathology may be critical to increase the vulnerability to develop compulsive behaviors following treatment with D3/D2 agonists.

7.
Addict Biol ; 16(1): 120-3, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20579003

RESUMEN

Except as a marker of cancer progression, gamma-synuclein (GSyn) had received little attention. Recent data showed however that GSyn modulates cocaine-induced locomotor effects, suggesting that it could also play a role in cocaine reinforcing effects. In the rat, siRNAs targeting GSyn expression were injected in the nucleus accumbens and cocaine reinforcing effects were evaluated by means of intravenous self-administration. A dose-response curve was followed by procedures of progressive ratio, extinction, cocaine- and cue-induced reinstatements. Decrease of GSyn expression increased self-administration over a large range of doses. This effect was associated with an increase in cocaine-induced reinstatement. The present data reveal that GSyn exert a specific negative control on cocaine-induced reinforcing and incentive effects.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Expresión Génica/genética , Núcleo Accumbens/fisiopatología , Abuso de Sustancias por Vía Intravenosa/genética , gamma-Sinucleína/genética , Animales , Aprendizaje por Asociación/fisiología , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/fisiopatología , Condicionamiento Operante/fisiología , Señales (Psicología) , Relación Dosis-Respuesta a Droga , Extinción Psicológica/fisiología , Motivación/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Núcleo Accumbens/patología , ARN Interferente Pequeño/genética , Ratas , Esquema de Refuerzo , Autoadministración , Abuso de Sustancias por Vía Intravenosa/patología
8.
Mol Autism ; 12(1): 2, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468258

RESUMEN

BACKGROUND: Contrasting findings were reported in several animal models with a Shank3 mutation used to induce various autism spectrum disorder (ASD) symptoms. Here, we aimed at investigating behavioral, cellular, and molecular consequences of a C-terminal (frameshift in exon 21) deletion in Shank3 protein in mice, a mutation that is also found in clinical conditions and which results in loss of major isoforms of Shank3. A special focus was made on cerebellar related parameters. METHODS: All three genotypes were analyzed [wild type (WT), heterozygote (Shank3+/ΔC) and homozygote (Shank3 ΔC/ΔC)] and males and females were separated into two distinct groups. Motor and social behavior, gait, Purkinje cells (PC) and glutamatergic protein levels were determined. Behavioral and cellular procedures used here were previously validated using two environmental animal models of ASD. ANOVA and post-hoc analysis were used for statistical analysis. RESULTS: Shank3 ΔC/ΔC mice showed significant impairments in social novelty preference, stereotyped behavior and gait. These were accompanied by a decreased number of PC in restricted cerebellar sub-regions and decreased cerebellar expression of mGluR5. Females Shank3 ΔC/ΔC were less affected by the mutation than males. Shank3+/ΔC mice showed impairments only in social novelty preference, grooming, and decreased mGluR5 expression and that were to a much lesser extent than in Shank3 ΔC/ΔC mice. LIMITATIONS: As Shank3 mutation is a haploinsufficiency, it is of interest to emphasize that Shank3+/ΔC mice showed only mild to no deficiencies compared to Shank3 ΔC/ΔC. CONCLUSIONS: Our findings indicate that several behavioral, cellular, and molecular parameters are affected in this animal model. The reported deficits are more pronounced in males than in females. Additionally, male Shank3 ΔC/ΔC mice show more pronounced alterations than Shank3+/ΔC. Together with our previous findings in two environmental animal models of ASD, our studies indicate that gait dysfunction constitutes a robust set of motor ASD symptoms that may be considered for implementation in clinical settings as an early and quantitative diagnosis criteria.


Asunto(s)
Marcha , Predisposición Genética a la Enfermedad , Proteínas de Microfilamentos , Actividad Motora , Mutación , Proteínas del Tejido Nervioso , Trastornos Psicomotores/genética , Trastornos Psicomotores/fisiopatología , Animales , Conducta Animal , Biomarcadores , Modelos Animales de Enfermedad , Femenino , Estudios de Asociación Genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Fenotipo , Trastornos Psicomotores/diagnóstico , Factores Sexuales , Conducta Social
9.
Addict Biol ; 15(1): 81-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19799583

RESUMEN

Corticosterone, the main glucorticoid hormone in rodents, facilitates behavioral responses to cocaine. Corticosterone is proposed to modulate cocaine intravenous self-administration (SA) and cocaine-induced locomotion through distinct receptors, the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), respectively. However, this remains debatable. On one hand, modulation of both responses by the GR was tested in different experimental conditions, i.e. light versus dark nycthemeral phase and naïve versus cocaine-experienced animals. On the other hand, modulation of both responses by the MR was never tested directly but only inferred based on the ability of low plasma corticosterone levels (those for which corticosterone almost exclusively binds the MR) to compensate the effects of adrenalectomy. Our goal here was to test the involvement of the GR and the MR in cocaine-induced locomotor and reinforcing effects in the same experimental conditions. C57Bl/6J mice were trained for cocaine (1 mg/kg/infusion) intravenous SA over 40 SA sessions. The animals were then administered with mifepristone (30 mg/kg i.p.), a GR antagonist, or with spironolactone (20 mg/kg/i.p.), an MR antagonist, 2 hours before either cocaine intravenous SA or cocaine-induced locomotion. In a comparable nycthemeral period and in similarly cocaine-experienced animals, a blockade of the GR decreased cocaine-induced reinforcing effects but not cocaine-induced locomotion. A blockade of the MR decreased both cocaine-induced reinforcing (but to a much lesser extent than the GR blockade) and locomotor effects. Altogether, our results comforted the hypothesis that the GR modulates cocaine-related operant conditioning, while the MR would modulate cocaine-related unconditioned effects. The present data also reveal mifepristone as an interesting tool for manipulating the impact of corticosterone on cocaine-induced reinforcing effects in mice.


Asunto(s)
Trastornos Relacionados con Cocaína/psicología , Cocaína/toxicidad , Diuréticos/farmacología , Alucinógenos/toxicidad , Antagonistas de Hormonas/farmacología , Mifepristona/farmacología , Antagonistas de Receptores de Mineralocorticoides/farmacología , Motivación , Actividad Motora/efectos de los fármacos , Espironolactona/farmacología , Abuso de Sustancias por Vía Intravenosa/psicología , Animales , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos C57BL , Receptores de Glucocorticoides/antagonistas & inhibidores , Autoadministración
10.
Neuropsychopharmacology ; 36(3): 569-79, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20980989

RESUMEN

Sensation/novelty-seeking is amongst the best markers of cocaine addiction in humans. However, its implication in the vulnerability to cocaine addiction is still a matter of debate, as it is unclear whether this trait precedes or follows the development of addiction. Sensation/novelty-seeking trait has been identified in rats on the basis of either novelty-induced locomotor activity (high-responder (HR) trait) or novelty-induced place preference (high-novelty-preference trait (HNP)). HR and HNP traits have been associated with differential sensitivity to psychostimulants. However, it has recently been demonstrated that HR rats do not develop compulsive cocaine self-administration (SA) after protracted exposure to the drug, thereby suggesting that at least one dimension of sensation/novelty seeking in the rat is dissociable from the vulnerability to switch from controlled to compulsive cocaine SA. We therefore investigated whether HNP, as measured as the propensity to choose a new environment in a free choice procedure, as opposed to novelty-induced locomotor activity, predicts the vulnerability to, and the severity of, addiction-like behavior for cocaine. For this, we identified HR/LR rats and HNP/LNP rats before any exposure to cocaine. After 60 days of cocaine SA, each rat was given an addiction score based on three addiction-like behaviors (persistence of responding when the drug is signaled as not available, high breakpoint under progressive ratio schedule and resistance to punishment) that resemble the clinical features of drug addiction, namely inability to refrain from drug seeking, high motivation for the drug and compulsive drug use despite adverse consequences. We show that, as opposed to HR rats, HNP rats represent a sub-population predisposed to compulsive cocaine intake, displaying higher addiction scores than LNP rats. This study thereby provides new insights into the factors predisposing to cocaine addiction, supporting the hypothesis that addiction is sustained by two vulnerable phenotypes: a 'drug use prone' phenotype such as HR which brings an individual to develop drug use and an 'addiction prone' phenotype, such as HNP, which facilitates the shift from sustained to compulsive drug intake and addiction.


Asunto(s)
Anestésicos Locales/administración & dosificación , Cocaína/administración & dosificación , Conducta Compulsiva/fisiopatología , Condicionamiento Operante/efectos de los fármacos , Conducta Exploratoria/fisiología , Anestésicos Locales/farmacología , Animales , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Conducta Compulsiva/psicología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Sprague-Dawley , Análisis de Regresión , Autoadministración , Estadísticas no Paramétricas
11.
Science ; 328(5986): 1709-12, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20576893

RESUMEN

Chronic exposure to drugs of abuse induces countless modifications in brain physiology. However, the neurobiological adaptations specifically associated with the transition to addiction are unknown. Cocaine self-administration rapidly suppresses long-term depression (LTD), an important form of synaptic plasticity in the nucleus accumbens. Using a rat model of addiction, we found that animals that progressively develop the behavioral hallmarks of addiction have permanently impaired LTD, whereas LTD is progressively recovered in nonaddicted rats maintaining a controlled drug intake. By making drug seeking consistently resistant to modulation by environmental contingencies and consequently more and more inflexible, a persistently impaired LTD could mediate the transition to addiction.


Asunto(s)
Conducta Adictiva , Trastornos Relacionados con Cocaína/fisiopatología , Depresión Sináptica a Largo Plazo , Núcleo Accumbens/fisiopatología , Animales , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministración , Transmisión Sináptica
12.
Biol Psychiatry ; 65(10): 863-8, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18639867

RESUMEN

BACKGROUND: Clinical observations suggest that cocaine addiction often emerges with new patterns of use. Whether these changes are a cause of addiction or its consequence is unknown. We investigated whether the development of an addiction-like behavior in the rat is associated with the pattern of cocaine intake and with cocaine craving, a major feature of cocaine addiction. METHODS: To determine whether changes in the pattern of cocaine use and enhanced craving precede or parallel the onset of addiction, we used a rat addiction model that incorporates core features of human addiction. For this purpose, the pattern of inter-infusion intervals (a measure of pattern of cocaine intake), sensitivity to cocaine-induced reinstatement (a measure of cocaine craving), and addiction-like behaviour were assessed over several months of intravenous cocaine self-administration. RESULTS: We found that, even at early stages of cocaine self-administration, both the pattern of cocaine intake and the intensity of drug-induced reinstatement predict the severity of cocaine use, measured after 75 days of self-administration. CONCLUSIONS: Our results identify key predictors of cocaine addiction-intensified pattern of drug use and high drug-induced craving-that may help in the identification of subjects at risk for subsequent development of severe cocaine addiction.


Asunto(s)
Conducta Adictiva , Trastornos Relacionados con Cocaína/psicología , Cocaína/farmacología , Autoadministración/psicología , Animales , Cocaína/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Modelos Animales de Enfermedad , Extinción Psicológica , Infusiones Intravenosas , Masculino , Valor Predictivo de las Pruebas , Castigo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
13.
Nat Neurosci ; 12(3): 247-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19234455

RESUMEN

The glucocorticoid receptor is a ubiquitous transcription factor mediating adaptation to environmental challenges and stress. Selective Nr3c1 (the glucocorticoid receptor gene) ablation in mouse dopaminoceptive neurons expressing dopamine receptor 1a, but not in dopamine-releasing neurons, markedly decreased the motivation of mice to self-administer cocaine, dopamine cell firing and the control exerted by dopaminoceptive neurons on dopamine cell firing activity. In contrast, anxiety was unaffected, indicating that glucocorticoid receptors modify a number of behavioral disorders through different neuronal populations.


Asunto(s)
Conducta Adictiva/metabolismo , Cocaína/administración & dosificación , Dopamina/fisiología , Neuronas/fisiología , Receptores de Glucocorticoides/fisiología , Estrés Psicológico/metabolismo , Animales , Conducta Adictiva/genética , Conducta Adictiva/psicología , Cocaína/antagonistas & inhibidores , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Dopamina/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/biosíntesis , Receptores de Glucocorticoides/genética , Autoadministración , Estrés Psicológico/genética , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA