Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci ; 41(46): 9503-9520, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620721

RESUMEN

Neuromodulation via the intracellular second messenger cAMP is ubiquitous at presynaptic nerve terminals. This modulation of synaptic transmission allows exocytosis to adapt to stimulus levels and reliably encode information. The AII amacrine cell (AII-AC) is a central hub for signal processing in the mammalian retina. The main apical dendrite of the AII-AC is connected to several lobular appendages that release glycine onto OFF cone bipolar cells and ganglion cells. However, the influence of cAMP on glycine release is not well understood. Using membrane capacitance measurements from mouse AII-ACs to directly measure exocytosis, we observe that intracellular dialysis of 1 mm cAMP enhances exocytosis without affecting the L-type Ca2+ current. Responses to depolarizing pulses of various durations show that the size of the readily releasable pool of vesicles nearly doubles with cAMP, while paired-pulse depression experiments suggest that release probability does not change. Specific agonists and antagonists for exchange protein activated by cAMP 2 (EPAC2) revealed that the cAMP-induced enhancement of exocytosis requires EPAC2 activation. Furthermore, intact Ca2+ stores were also necessary for the cAMP potentiation of exocytosis. Postsynaptic recordings from OFF cone bipolar cells showed that increasing cAMP with forskolin potentiated the frequency of glycinergic spontaneous IPSCs. We propose that cAMP elevations in the AII-AC lead to a robust enhancement of glycine release through an EPAC2 and Ca2+ store signaling pathway. Our results thus contribute to a better understanding of how AII-AC crossover inhibitory circuits adapt to changes in ambient luminance.SIGNIFICANCE STATEMENT The mammalian retina operates over a wide dynamic range of light intensities and contrast levels. To optimize the signal-to-noise ratio of processed visual information, both excitatory and inhibitory synapses within the retina must modulate their gain in synaptic transmission to adapt to different levels of ambient light. Here we show that increases of cAMP concentration within AII amacrine cells produce enhanced exocytosis from these glycinergic interneurons. Therefore, we propose that light-sensitive neuromodulators may change the output of glycine release from AII amacrine cells. This novel mechanism may fine-tune the amount of tonic and phasic synaptic inhibition received by bipolar cell terminals and, consequently, the spiking patterns that ganglion cells send to the upstream visual areas of the brain.


Asunto(s)
Células Amacrinas/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Glicina/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , Exocitosis/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
2.
Eur J Neurosci ; 28(12): 2371-80, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19087168

RESUMEN

Thyroid hormone (TH) deficiency during perinatal life causes a multitude of functional and morphological deficits in the brain. In rats and mice, TH dependency of neural maturation is particularly evident during the first 1-2 weeks of postnatal development. During the same period, synaptic transmission via the inhibitory transmitters glycine and GABA changes from excitatory depolarizing effects to inhibitory hyperpolarizing ones in most neurons [depolarizing-hyperpolarizing (D/H) shift]. The D/H shift is caused by the activation of the K(+)-Cl(-) co-transporter KCC2 which extrudes Cl(-) from the cytosol, thus generating an inward-directed electrochemical Cl(-) gradient. Here we analyzed whether the D/H shift and, consequently, the onset of inhibitory neurotransmission are influenced by TH. Gramicidin perforated-patch recordings from auditory brainstem neurons of experimentally hypothyroid rats revealed depolarizing glycine effects until postnatal day (P)11, i.e. almost 1 week longer than in control rats, in which the D/H shift occurred at approximately P5-6. Likewise, until P12-13 the equilibrium potential E(Gly) in hypothyroids was more positive than the membrane resting potential. Normal E(Gly) could be restored upon TH substitution in P11-12 hypothyroids. These data demonstrate a disturbed Cl(-) homeostasis following TH deficiency and point to a delayed onset of synaptic inhibition. Interestingly, immunohistochemistry demonstrated an unchanged KCC2 distribution in hypothyroids, implying that TH deficiency did not affect KCC2 gene expression but may have impaired the functional status of KCC2. Hippocampal neurons of hypothyroid P16-17 rats also demonstrated an impaired Cl(-) homeostasis, indicating that TH may have promoted the D/H shift and maturation of synaptic inhibition throughout the brain.


Asunto(s)
Vías Auditivas , Tronco Encefálico/citología , Cloruros/metabolismo , Hipocampo/citología , Hipotiroidismo/metabolismo , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Antitiroideos/administración & dosificación , Vías Auditivas/anatomía & histología , Vías Auditivas/fisiología , Tronco Encefálico/metabolismo , Femenino , Glicina/metabolismo , Hipocampo/metabolismo , Homeostasis , Humanos , Metimazol/administración & dosificación , Ratones , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal/fisiología , Simportadores/genética , Simportadores/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Cotransportadores de K Cl
3.
J Neurosci ; 23(10): 4134-45, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12764101

RESUMEN

Glycine and GABA, the dominant inhibitory neurotransmitters in the CNS, assume a depolarizing role in early development, leading to increased cytoplasmic Ca2+ levels and action potentials. The effect is thought to be of some significance for maturation. The depolarization is caused by Cl- efflux, and chloride transporters contribute to the phenomenon by raising the intracellular Cl- concentration ([Cl-]i) above equilibrium, thereby generating an outward-directed electrochemical gradient for Cl-. In mature neurons, the [Cl-]i is reduced below equilibrium, thus rendering glycine activity hyperpolarizing. Here, we investigated the temporal expression of the K-Cl cotransporter KCC2 and the Na-K-Cl cotransporter NKCC1 in the lateral superior olive (LSO) of rats and mice. The two cation cotransporters normally extrude and accumulate Cl-, respectively. As evidenced by several methods, KCC2 mRNA was present in LSO neurons during both the depolarizing and hyperpolarizing periods. Western blots confirmed a constant level of KCC2 in the brainstem, and immunohistochemistry showed that the protein is diffusely distributed within neonatal LSO neurons, becoming integrated into the plasma membrane only with increasing age. The glycine reversal potential in KCC2 knock-out mice differed significantly from that determined in wild-type controls at postnatal day 12 (P12) but not at P3, demonstrating that KCC2 is not active in neonates, despite its early presence. NKCC1 mRNA was not detected during the depolarizing phase in the LSO, implying that this transporter does not contribute to the high [Cl-]i. Our results reveal major differences in the development of [Cl-]i regulation mechanisms seen in brainstem versus forebrain regions.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Inhibición Neural/fisiología , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/fisiología , Transmisión Sináptica/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Tronco Encefálico/química , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiología , Nervio Coclear/crecimiento & desarrollo , Nervio Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Glicina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/genética , Núcleo Olivar/química , Núcleo Olivar/crecimiento & desarrollo , Núcleo Olivar/metabolismo , Núcleo Olivar/fisiología , Técnicas de Placa-Clamp , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/fisiología , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Simportadores de Cloruro de Sodio-Potasio/biosíntesis , Simportadores de Cloruro de Sodio-Potasio/deficiencia , Miembro 2 de la Familia de Transportadores de Soluto 12 , Transmisión Sináptica/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología , Ácido gamma-Aminobutírico/metabolismo
4.
Neuron ; 87(3): 563-75, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26247863

RESUMEN

Ribbon synapses convey sustained and phasic excitatory drive within retinal microcircuits. However, the properties of retinal inhibitory synapses are less well known. AII-amacrine cells are interneurons in the retina that exhibit large glycinergic synapses at their dendritic lobular appendages. Using membrane capacitance measurements, we observe robust exocytosis elicited by the opening of L-type Ca(2+) channels located on the lobular appendages. Two pools of synaptic vesicles were detected: a small, rapidly releasable pool and a larger and more slowly releasable pool. Depending on the stimulus, either paired-pulse depression or facilitation could be elicited. During early postnatal maturation, the coupling of the exocytosis Ca(2+)-sensor to Ca(2+) channel becomes tighter. Light-evoked depolarizations of the AII-amacrine cell elicited exocytosis that was graded to light intensity. Our results suggest that AII-amacrine cell synapses are capable of providing both phasic and sustained inhibitory input to their postsynaptic partners without the benefit of synaptic ribbons.


Asunto(s)
Exocitosis/fisiología , Interneuronas/metabolismo , Inhibición Neural/fisiología , Retina/metabolismo , Vesículas Sinápticas/metabolismo , Células Amacrinas/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estimulación Luminosa/métodos , Conejos , Retina/citología
5.
Nat Neurosci ; 12(3): 286-94, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19198604

RESUMEN

Most fast-acting neurotransmitters are rapidly cleared from synaptic regions. This feature isolates synaptic sites, rendering the time course of synaptic responses independent of the number of active synapses. We found an exception at glycinergic synapses on granule cells of the rat dorsal cochlear nucleus. Here the duration of inhibitory postsynaptic currents (IPSCs) was dependent on the number of presynaptic axons that were stimulated and on the number of vesicles that were released from each axon. Increasing the stimulus number or frequency, or blocking glycine uptake, slowed synaptic decays, whereas a low-affinity competitive antagonist of glycine receptors (GlyRs) accelerated IPSC decay. These effects could be explained by unique features of GlyRs that are activated by pooling of glycine across synapses. Functionally, increasing the number of IPSPs markedly lengthened the period of spike inhibition following the cessation of presynaptic stimulation. Thus, temporal properties of inhibition can be controlled by activity levels in multiple presynaptic cells or by adjusting release probability at individual synapses.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Glicina/fisiología , Neurotransmisores/fisiología , Tiempo de Reacción/fisiología , Receptores de Glicina/fisiología , Transmisión Sináptica/fisiología , Animales , Núcleo Coclear/efectos de los fármacos , Núcleo Coclear/fisiología , Glicina/antagonistas & inhibidores , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Neurotransmisores/antagonistas & inhibidores , Neurotransmisores/metabolismo , Piridazinas/farmacología , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Receptores de Glicina/antagonistas & inhibidores , Sarcosina/análogos & derivados , Sarcosina/farmacología , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología
6.
J Neurophysiol ; 99(1): 208-19, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959739

RESUMEN

The mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with nonauditory signals via a cerebellar-like granule cell circuit. Although granule cells carry nonauditory information to the DCN, almost nothing is known about their physiology. Here we describe electrophysiological features of synaptic inputs to granule cells in the DCN by in vitro patch-clamp recordings from P12 to P22 rats. Granule cells ranged from 6 to 8 microm in cell body diameter and had high-input resistance. Excitatory postsynaptic currents consisted of both AMPA receptor-mediated and N-methyl-D-aspartate receptor-mediated currents. Synaptically evoked excitatory postsynaptic currents ranged from -25 to -140 pA with fast decay time constants. Synaptic stimulation evoked both short- and long-latency synaptic responses that summated to spike threshold, indicating the presence of a polysynaptic excitatory pathway in the granule cell circuit. Synaptically evoked inhibitory postsynaptic currents in Cl(-)-loaded cells ranged from -30 to -1,021 pA and were mediated by glycine and, to a lesser extent, GABA(A) receptors. Unlike cerebellar granule cells, DCN granule cells lacked tonic inhibition by GABA. The glycinergic synaptic conductance was mediated by heteromeric glycine receptors and was far stronger than the glutamatergic conductance, suggesting that glycinergic neurons may act to gate nonauditory signals in the DCN.


Asunto(s)
Percepción Auditiva/fisiología , Núcleo Coclear/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Vías Auditivas/citología , Vías Auditivas/efectos de los fármacos , Vías Auditivas/fisiología , Percepción Auditiva/efectos de los fármacos , Tamaño de la Célula , Núcleo Coclear/citología , Núcleo Coclear/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Glicina/metabolismo , Hidrazinas , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Receptores AMPA/efectos de los fármacos , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Coloración y Etiquetado , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA